Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development.
BackgroundPhenol oxidases (POs) catalyze the oxidation of dopa and dopamine to melanin, which is crucial for cuticle formation and innate immune maintenance in insects. Although, Laccase 2, a member of the PO family, has been reported to be a requirement for melanin-mediated cuticle tanning in the development stages of some insects, whether it participates in cuticle construction and other physiological processes during the metamorphosis of mosquito pupae is unclear.MethodsThe association between the phenotype and the expression profile of Anopheles sinensis Laccase 2 (AsLac2) was assessed from pupation to adult eclosion. Individuals showing an expression deficiency of AsLac2 that was produced by RNAi and their phenotypic defects and physiological characterizations were compared in detail with the controls.ResultsDuring the dominant expression period, knockdown of AsLac2 in pupae caused the cuticle to be unpigmented, and produced thin and very soft cuticles, which further impeded the eclosion rate of adults as well as their fitness. Moreover, melanization immune responses in the pupae were sharply decreased, leading to poor resistance to microorganism infection. Both the high conservation among Laccase 2 homologs and a very similar genomic synteny of the neighborhood in Anopheles genus implies a conservative function in the pupal stage.ConclusionsTo our knowledge, this is the first study to report the serious phenotypic defects in mosquito pupae caused by the dysfunction of Laccase 2. Our findings strongly suggest that Laccase 2 is crucial for Anopheles cuticle construction and melanization immune responses to pathogen infections during pupal metamorphosis. This irreplaceability provides valuable information on the application of Lacccase 2 and/or other key genes in the melanin metabolism pathway for developing mosquito control strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-017-2118-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.