An effective approach to develop a novel macroscopic anisotropic bilayer hydrogel actuator with on–off switchable fluorescent color‐changing function is reported. Through combining a collapsed thermoresponsive graphene oxide‐poly(N‐isopropylacrylamide) (GO‐PNIPAM) hydrogel layer with a pH‐responsive perylene bisimide‐functionalized hyperbranched polyethylenimine (PBI‐HPEI) hydrogel layer via macroscopic supramolecular assembly, a bilayer hydrogel is obtained that can be tailored and reswells to form a 3D hydrogel actuator. The actuator can undergo complex shape deformation caused by the PNIPAM outside layer, then the PBI‐HPEI hydrogel inside layer can be unfolded to trigger the on–off switch of the pH‐responsive fluorescence under the green light irradiation. This work will inspire the design and fabrication of novel biomimetic smart materials with synergistic functions.
The efficient extraction of targets from complex surfaces is vital for technological applications ranging from environmental pollutant monitoring to analysis of explosive traces and pesticide residues. In our present study, we proposed a proof-of-concept surface enhance Raman scattering (SERS) active substrate serving directly to the rapid extraction and detection of target molecules. The novel substrate was constructed by decorating the commercial tape with colloidal gold nanoparticles (Au NPs), which simultaneously provides SERS activity and "sticky" of adhesive. The utility of SERS tape was demonstrated by directly extracting pesticide residues in fruits and vegetables via a simple and viable "paste and peel off" approach. The obtained strong and easily distinguishable SERS signals allow us to detect various pesticide residues such as parathion-methyl, thiram, and chlorpyrifos in the real samples with complex surfaces including green vegetable, cucumber, orange, and apple.
Supramolecular shape memory hydrogels (SSMHs) refer to shape memory polymers, in which temporary shapes are stabilized by reversible crosslinks such as supramolecular interactions and dynamic covalent bonds. Following a brief introduction of the conventional shape memory polymers (SMPs), this tutorial review is focused to summarize the recent advancement in various reversible crosslinks employed to construct SSMHs (supramolecular interactions and dynamic covalent bonds) and different shape memory behaviors (dual and triple shape memory effects). In addition, current challenges and future perspectives in this field are also discussed to suggest a new developing direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.