Surface reactions occurring on LiMnO, LiCoO, LiNiO, Li[NiMnCo]O, and LiFePO during charging and overcharging are studied by in situ and ex situ Auger electron spectroscopy. Carbon surface stability at the cathode solid-electrolyte interphase (SEI), associated with carbonate formation, decomposition, and CO/CO evolution, on different electrodes during cycling correlates with their cycle life. To understand how associated CO and CO evolution affects cycle stability, LiMnO is cycled in flowing gas. Flowing Ar enhances cycle life by a factor of 2, while flowing Ar with 1% CO reduces cycle life by a factor of 2. CO is proposed to degrade cycle life by trapping Li and metal ions as carbonate in the anode SEI.
Abstract:In this paper a novel laser impact spot welding (LISW) method is described, in which a hump was formed on the flyer plate on the intended welding spot location by local pre-forming. When the flyer and base plates were placed together to perform welding, the two plates kept in contact over their entire surfaces except at the hump, where a local air gap was enough to guarantee the impact velocity and collision angle to achieve spot welding using laser pulse energy. The presented approach was implemented to join thin titanium foils to copper foils under low laser energy system. Joints with regular shapes were obtained. The microstructure in the weld interface was studied with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that the jetting occurred at the central region of the weld spots due to oblique impact. Wave features were observed in the weld interfaces. The impact energy was found to have significant influence on the wave's characteristics. Moreover, SEM images and EDS analysis did not show apparent element diffusion across the weld interface. Besides, the lap shearing test was used to characterize the mechanical properties of the spot welded joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.