Amorphous solid dispersions (ASDs) are inherently unstable because of high internal energy. Evaluating physical and chemical stability during the process and storage is essential. Numerous researches have demonstrated how polymers influence the drug precipitation and physical stability of ASDs, while the influence of polymers on the chemical stability of ASDs is often overlooked. Therefore, this study aimed to investigate the effect of polymers on the physical and chemical stability of spray-dried ASDs using dipyridamole (DP) as a model drug. Proper polymers were selected by assessing their abilities to inhibit drug recrystallization in supersaturated solutions. HPMC E5, Soluplus®, HPMCP-55, and HPMCAS-LP were shown to be effective stabilizers. The optimized formulations were further stored at a high temperature (60 °C) and high humidity (40 °C, 75% RH) for 2 months, and their physical and chemical stability was evaluated using polarizing optical microscopy, FTIR, HPLC, and mass spectrometry (MS). In general, crystallization was observed in all samples, which indicated the physical instability under stressed storage conditions. Also, it was noted that the polymers in ASDs rather than physical mixtures, induced a dramatic drug degradation after being exposed to a high temperature (HPMCP-55 > 80% and HPMCAS-LP > 50%) and high humidity (HPMCP-55 > 40% and HPMCAS-LP > 10%). The MS analysis further confirmed the degradation products, which might be generated from the reaction between dipyridamole and phthalic anhydride decomposed from HPMCP-55 and HPMCAS-LP. Overall, the exposure of ASDs to stressed conditions resulted in recrystallization and even the chemical degradation induced by polymers.
Aim: Wuzhi tablets are a dose-sparing agent for tacrolimus (TAC) in China and increase the bioavailability of TAC. The current study aimed to evaluate the pharmacokinetic interaction magnitude of Wuzhi and TAC and explore the potential determinants of this interaction.Methods: This study performed a retrospective, self-controlled study of 138 renal transplant recipients who were co-administered TAC and Wuzhi. The trough concentration (C0) of TAC at baseline and 3, 7, 14 and 21 days after Wuzhi co-therapy initiation was measured, and the CYP3A5 polymorphism was genotyped. The corresponding clinical factors were recorded. The ratio of dose-adjusted C0 (C0/D) post-and pre-combination therapy (ΔC0/D) indicates the interaction magnitude. Univariate and multivariate analyses were used to identify determinants and establish the prediction model.Results: ΔC0/D reached a steady state within 14 days. The geometrical mean ΔC0/D was 2.91 (range 1.02-9.49, IQR 2.13-3.80). ΔC0/D was blunted in CYP3A5 expressers (estimated effect: -39.8%, P = .001) and affected by hematocrit (Hct) (+24.0% per 10% increase, P = .005) and baseline C0/D (-31.9% per 1 ng⋅ml -1 ⋅mg -1 increase, P < .001). The prediction model was ΔC0/D = .319baseline C0/D × 1.398CYP3A5 (expressers = 0/non-expressers = 1) × 1.024Hct × 1.744, and it explained 28.1% of the variability.
Conclusion:Our study is the first attempt to date to give an assessment of the magnitude of pharmacokinetic interaction between TAC and Wuzhi in a cohort of renal transplant recipients, and CYP3A5 genotypes, baseline C0/D and Hct were identified as determinants of this interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.