Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.
A phase surface plasmon resonance (SPR) sensing technology based on white light polarized interference in common-path geometry is reported. A halogen lamp is used as the excitation source of the SPR sensor. The fixed optical path difference (OPD) between p-and s-polarized light is introduced by a birefringence crystal to produce sinusoidal spectral interference fringes. The SPR phase is accurately extracted from the interference fringes using a novel iterative parameter-scanning cross-correlation algorithm. The dynamic detection range is expanded by tracking the best SPR wavelength, which is identified using a window Fourier algorithm. The experimental results show that the sensitivity of this SPR system was 1.3 × 10 −7 RIU, and the dynamic detection range was 0.029 RIU. This sensor, not only simple to implement and cost efficient, requires no modulators.
Imaging-based spectral surface plasmon resonance (λSPR) biosensing is predominantly limited by data throughput because of the multiplied data capacity emerging from 2-dimensional sensor array sites and the many data points required to produce an accurate measurement of the absorption dip. Here we present an adaptive feedback approach to address the data throughput issue in λSPR biosensing. A feedback loop constantly tracks the dip location while target-molecule binding occurs at the sensor surface. An adaptive window is then imposed to reduce the number of data points that each pixel has to capture without compromising measurement accuracy. Rapid wavelength scanning is performed with a liquid crystal tunable filter (LCTF). With the use of a feedback loop, our demonstration system can produce a dip measurement within 700ms, thus confirming that the reported λSPR approach is most suitable for real-time micro-array label-free biosensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.