The spindle assembly checkpoint (SAC) monitors the attachment of microtubules to the kinetochore and inhibits anaphase when microtubule binding is incomplete. The SAC might also respond to tension; however, how cells can sense tension and whether its detection is important to satisfy the SAC remain controversial. We generated a HeLa cell line in which two components of the kinetochore, centromere protein A and Mis12, are labeled with green and red fluorophores, respectively. Live cell imaging of these cells reveals repetitive cycles of kinetochore extension and recoiling after biorientation. Under conditions in which kinetochore stretching is suppressed, cells fail to silence the SAC and enter anaphase after a delay, regardless of centromere stretching. Monitoring cyclin B levels as a readout for anaphase-promoting complex/cyclosome activity, we find that suppression of kinetochore stretching delays and decelerates cyclin B degradation. These observations suggest that the SAC monitors stretching of kinetochores rather than centromeres and that kinetochore stretching promotes silencing of the SAC signal.
Hepatocyte nuclear factor-4alpha (HNF4alpha) exists in multiple isoforms that are generated by alternative promoter (P1 and P2) usage and splicing. Here we establish monoclonal antibodies (mAbs) for detecting P1 and P2 promoter-driven HNF4alpha, and evaluate their expression in normal adult human tissues and surgically resected carcinomas of different origins. Using immunohistochemical analysis, we demonstrate that, while P1 promoter-driven HNF4alpha is expressed in hepatocytes, small intestine, colon, kidney and epididymis, P2 promoter-driven HNF4alpha is expressed in bile duct, pancreas, stomach, small intestine, colon and epididymis. Altered expression patterns of P1 and P2 promoter-driven HNF4alpha were observed in gastric, hepatocellular and colorectal carcinomas. HNF4alpha was expressed in lung metastases from renal cell, hepatocellular and colorectal carcinoma but was not observed in lung tumours. The P1 and P2 promoter-driven HNF4alpha expression pattern of tumour metastases correlated with the primary site of origin. P1 promoter-driven HNF4alpha was also found in intestinal metaplasia of the stomach. These data provide evidence for the tissue distribution of P1 and P2 promoter-driven HNF4alpha at the protein level and suggest that HNF4alpha may be a novel diagnostic marker for metastases of unknown primary. We propose that the dysregulation of alternative promoter usage of HNF4alpha is associated with the pathogenesis of certain cancers.
The Eker rat hereditary renal carcinoma (RC) is an excellent example of a mendelian dominant predisposition to a specific cancer in an experimental animal. We have previously established a new conserved linkage group on rat chromosome 10q and human chromosome 16p13.3, and shown that the Eker mutation is tightly linked to the tuberous sclerosis (Tsc2) gene. We now describe a germline mutation in the gene encoding Tsc2 caused by the insertion of an approximately 5 kilobase DNA fragment in the Eker rat, resulting in aberrant RNA expression from the mutant allele. The phenotype of tuberous sclerosis in humans differs from that of the Eker rat, except for the occurrence of renal tumours. The Eker rat may therefore provide insights into species-specific differences in tumourigenesis and/or phenotype-specific mutations.
The cell cycle transition from interphase into mitosis is best characterized by the appearance of condensed chromosomes that become microscopically visible as thread-like structures in nuclei. Biochemically, launching the mitotic program requires the activation of the mitotic cyclin-dependent kinase Cdk1 (cyclin-dependent kinase 1), but whether and how Cdk1 triggers chromosome assembly at mitotic entry are not well understood. Here we report that mitotic chromosome assembly in prophase depends on Cdk1-mediated phosphorylation of the condensin II complex. We identified Thr 1415 of the CAP-D3 subunit as a Cdk1 phosphorylation site, which proved crucial as it was required for the Polo kinase Plk1 (Polo-like kinase 1) to localize to chromosome axes through binding to CAP-D3 and thereby hyperphosphorylate the condensin II complex. Live-cell imaging analysis of cells carrying nonphosphorylatable CAP-D3 mutants in place of endogenous protein suggested that phosphorylation of Thr 1415 is required for timely chromosome condensation during prophase, and that the Plk1-mediated phosphorylation of condensin II facilitates its ability to assemble chromosomes properly. These observations provide an explanation for how Cdk1 induces chromosome assembly in cells entering mitosis, and underscore the significance of the cooperative action of Plk1 with Cdk1.
Summary Incorrect attachment of kinetochore microtubules is the leading cause of chromosome missegregation in cancers. The highly conserved chromosomal passenger complex (CPC), containing mitotic kinase Aurora B as a catalytic subunit, ensures faithful chromosome segregation through destabilizing incorrect microtubule attachments and promoting bi-orientation of chromosomes on the mitotic spindle. It is unknown whether CPC dysfunction affects chromosome segregation fidelity in cancers and, if so, how. Here we show that heterochromatin protein 1 (HP1) is an essential CPC component required for full Aurora B activity. HP1 binding to the CPC becomes particularly important when Aurora B phosphorylates kinetochore targets to eliminate erroneous microtubule-attachments. Remarkably, a reduced proportion of HP1-bound to CPC is widespread in cancers, which causes an impairment in Aurora B activity. These results indicate that HP1 is an essential modulator for CPC function, and identify a molecular basis for chromosome segregation errors in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.