BackgroundHere, we report on the partial and full-length genomic (FLG) variability of HTLV-1 sequences from 90 well-characterized subjects, including 48 HTLV-1 asymptomatic carriers (ACs), 35 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and 7 adult T-cell leukemia/lymphoma (ATLL) patients, using an Illumina paired-end protocol.MethodsBlood samples were collected from 90 individuals, and DNA was extracted from the PBMCs to measure the proviral load and to amplify the HTLV-1 FLG from two overlapping fragments. The amplified PCR products were subjected to deep sequencing. The sequencing data were assembled, aligned, and mapped against the HTLV-1 genome with sufficient genetic resemblance and utilized for further phylogenetic analysis.ResultsA high-throughput sequencing-by-synthesis instrument was used to obtain an average of 3210- and 5200-fold coverage of the partial (n = 14) and FLG (n = 76) data from the HTLV-1 strains, respectively. The results based on the phylogenetic trees of consensus sequences from partial and FLGs revealed that 86 (95.5%) individuals were infected with the transcontinental sub-subtypes of the cosmopolitan subtype (aA) and that 4 individuals (4.5%) were infected with the Japanese sub-subtypes (aB). A comparison of the nucleotide and amino acids of the FLG between the three clinical settings yielded no correlation between the sequenced genotype and clinical outcomes. The evolutionary relationships among the HTLV sequences were inferred from nucleotide sequence, and the results are consistent with the hypothesis that there were multiple introductions of the transcontinental subtype in Brazil.ConclusionsThis study has increased the number of subtype aA full-length genomes from 8 to 81 and HTLV-1 aB from 2 to 5 sequences. The overall data confirmed that the cosmopolitan transcontinental sub-subtypes were the most prevalent in the Brazilian population. It is hoped that this valuable genomic data will add to our current understanding of the evolutionary history of this medically important virus.
Background: CD4 + CD25 high regulatory T (T Reg ) cells modulate antigen-specific T cell responses, and can suppress anti-viral immunity. In HTLV-1 infection, a selective decrease in the function of T Reg cell mediated HTLV-1-tax inhibition of FOXP3 expression has been described. The purpose of this study was to assess the frequency and phenotype of T Reg cells in HTLV-1 asymptomatic carriers and in HTLV-1-associated neurological disease (HAM/TSP) patients, and to correlate with measures of T cell activation.
BackgroundIn vitro studies have demonstrated that deletions and point mutations introduced into each 21 bp imperfect repeat of Tax-responsive element (TRE) of the genuine human T-cell leukemia virus type I (HTLV-1) viral promoter abolishes Tax induction. Given these data, we hypothesized that similar mutations may affect the proliferation of HTLV-1infected cells and alter the proviral load (PvL). To test this hypothesis, we conducted a cross-sectional genetic analysis to compare the near-complete LTR nucleotide sequences that cover the TRE1 region in a sample of HTLV-1 asymptomatic carriers with different PvL burden.MethodsA total of 94 asymptomatic HTLV-1 carriers with both sequence from the 5' long terminal repeat (LTR) and a PvL for Tax DNA measured using a sensitive SYBR Green real-time PCR were studied. The 94 subjects were divided into three groups based on PvL measurement: 31 low, 29 intermediate, and 34 high. In addition, each group was compared based on sex, age, and viral genotypes. In another analysis, the median PvLs between individuals infected with mutant and wild-type viruses were compared.ResultsUsing a categorical analysis, a G232A substitution, located in domain A of the TRE-1 motif, was detected in 38.7% (12/31), 27.5% (8/29), and 61.8% (21/34) of subjects with low, intermediate, or high PvLs, respectively. A significant difference in the detection of this mutation was found between subjects with a high or low PvL and between those with a high or intermediate PvL (both p < 0.05), but not between subjects with a low or intermediate PvL (p > 0.05). This result was confirmed by a non-parametric analysis that showed strong evidence for higher PvLs among HTLV-1 positive individuals with the G232A mutation than those without this mutation (p < 0.03). No significant difference was found between the groups in relation to age, sex or viral subtypes (p > 0. 05).ConclusionsThe data described here show that changes in domain A of the HTLV-1 TRE-1 motif resulting in the G232A mutation may increase HTLV-1 replication in a majority of infected subjects.
BackgroundThe Interleukin 28B (IL28B) rs12979860 polymorphisms was recently reported to be associated with the human T-cell leukemia virus type 1 (HTLV-1) proviral load (PvL) and the development of the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).MethodsIn an attempt to examine this hypothesis, we assessed the association of the rs12979860 genotypes with HTLV-1 PvL levels and clinical status in 112 unrelated Brazilian subjects (81 HTLV-1 asymptomatic carriers, 24 individuals with HAM/TSP and 7 with Adult T cell Leukemia/Lymphoma (ATLL)).ResultsAll 112 samples were successfully genotyped and their PvLs compared. Neither the homozygote TT nor the heterozygote CT mutations nor the combination genotypes (TT/CT) were associated with a greater PvL. We also observed no significant difference in allele distribution between asymptomatic carriers and patients with HTLV-1 associated HAM/TSP.ConclusionsOur study failed to support the previously reported positive association between the IL28B rs12979860 polymorphisms and an increased risk of developing HAM/TSP in the Brazilian population.
In the present pilot study, massively parallel sequencing (MPS) technology was used to investigate cellular small RNA (sRNA) levels in the peripheral blood mononuclear cells (PBMCs) of human T-lymphotropic virus type I (HTLV-I) infected asymptomatic carriers with monoclonal (ASM) and polyclonal (ASP) T cell receptor (TCR) γ gene. Blood samples from 15 HTLV-I asymptomatic carriers (seven ASM and eight ASP) were tested for the clonal TCR-γ gene and submitted for sRNA library construction together with blood samples of five healthy controls (HCs) using Illumina sequencing platform. The sRNA-sequencing reads were aligned, annotated and profiled using various bioinformatics tools. Based on these results, possible markers were validated in the study samples by performing reverse transcription-quantitative (RT-q)PCR analysis. A total of 76 known sRNAs and 52 putative novel sRNAs were identified. Among them, 44 known and 34 potential novel sRNAs were differentially expressed in the ASM and ASP libraries compared with HCs. In addition, 10 known sRNAs were exclusively dysregulated in the ASM group and one (transfer RNA 65) was significantly upregulated in the ASP group. Homo sapiens (hsa) microRNA (miRNA/mir)-23a-3p,-28-5p, hsa-let-7e-5p and hsa-mir-28-3p and-361-5p were the most abundantly upregulated mature miRNAs and hsa-mir-363-3p,-532-5p,-106a-5p,-25-3p and-30e-5p were significantly downregulated miRNAs (P<0.05) with a >2-fold difference between the ASM and ASP groups compared with HCs. Based on these results, hsa-mir-23a-3p and-363-3p were selected for additional validation. However, the quantification of these two miRNAs using RT-qPCR did not provide any significant differences. While the present study failed to identify predictive sRNA markers to distinguish between ASM and ASP, the MPS results revealed differential sRNA expression profiles in the PBMCs of HTLV-1 asymptomatic carriers (ASM and ASP) compared with HCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.