Cascade cooling systems containing different cooling methods (e.g., air cooling, water cooling, refrigerating) are used to satisfy the cooling process of hot streams with large temperature spans. An effective cooling system can significantly save energy and costs. In a cascade cooling system, the heat load distribution between different cooling methods has great impacts on the capital cost and operation cost of the system, but the relative optimization method is not well established. In this work, a cascade cooling system containing waste heat recovery, air cooling, water cooling, absorption refrigeration, and compression refrigeration is proposed. The objective is to find the optimal heat load distribution between different cooling methods with the minimum total annual cost. Aspen Plus and MATLAB were combined to solve the established mathematical optimization model, and the genetic algorithm (GA) in MATLAB was adopted to solve the model. A case study in a polysilicon enterprise was used to illustrate the feasibility and economy of the cascade cooling system. Compared to the base case, which only includes air cooling, water cooling, and compression refrigeration, the cascade cooling system can reduce the total annual cost by USD 931,025·y−1 and save 7,800,820 kWh of electricity per year. It also can recover 3139 kW of low-grade waste heat, and generate and replace a cooling capacity of 2404 kW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.