Extracellular vesicles (EVs) that circulate in body fluids possess significant potential for disease diagnosis. Their use in clinical settings, however, has been limited owing to lack of simple and robust isolation methods. To rectify this problem, a centrifugal device for automatic, fast, and efficient isolation of EVs from whole-blood, called Exodisc-B is presented in this paper.
Methods:
The device comprises a built-in chamber to facilitate plasma separation and two nanoporous filters—one for removing larger particles and the other for enriching EVs. The performance of the device in comparison to ultracentrifugation (UC) was evaluated by analyzing the yield, purity, protein and RNA content of the isolated EVs. Additionally, the EV protein marker expressions were measured by ELISA and statistically analyzed to differentiate prostate cancer patients from healthy donors.
Results:
Compared with the UC technique, the proposed device is capable of isolating at least an order of magnitude higher number of EVs with about 30-fold higher mRNA count within 40 min. Sandwich ELISA of EV-specific membrane proteins—CD9-CD81—confirmed that Exodisc-B can isolate EVs from a volume of whole blood as low as 30 µL with a capture efficiency exceeding 75%. The device also facilitates temporal monitoring of tumor progression within live mouse xenograft models over a period of 13 weeks while using minimal volumes of weekly collected blood samples. Further, in ELISA analyses of multiple cancer-related proteins, such as prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA), epithelial cell adhesion molecule (EpCAM), epidermal growth factor receptor 1 (EGFR1), and heat shock protein 90 (HSP90), extracted from EVs isolated from human plasma, 43 patients were differentiated from 30 healthy donors.
Conclusion:
The results demonstrated the ability of Exodisc-B to provide a rapid, sensitive, and point-of-care-type method for extracting intact EVs from small volumes of clinical blood samples for disease diagnosis and monitoring.
Senescent cells accumulate in various tissues over time, and contribute to tissue dysfunction and aging-associated phenotypes. Accumulating evidence suggests that cellular senescence can be inhibited through pharmacological intervention, as well as through treatment with soluble factors derived from embryonic stem cells (ESCs). In an attempt to investigate the anti-senescence factors secreted by ESCs, we analyzed mouse ESC-derived extracellular miRNAs in conditioned medium (CM) via miRNA array analysis. We selected mmu-miR-291a-3p as a putative anti-senescence factor via bioinformatics analysis. We validated its inhibitory effects on replicative, adriamycin-induced, and ionizing radiation-induced senescence in human dermal fibroblasts. Treatment of senescent cells with mmu-miR-291a-3p decreased senescence-associated-β-galactosidase activity, enhanced proliferative potential, and reduced mRNA and protein expression of TGFBR2, p53, and p21. Mmu-miR-291a-3p in CM was enclosed in ESC-derived exosomes and exosomes purified from ESC-CM inhibited cellular senescence. The inhibitory effects of mmu-miR-291a-3p were mediated through the TGFBR2 signaling pathway. Hsa-miR-371a-3p and hsa-miR-520e, the human homologs of mmu-miR-291a-3p, showed similar anti-senescence activity. Furthermore, mmu-miR-291a-3p accelerated the excisional skin wound healing process in aged mice. Our results indicate that the ESC-derived mmu-miR-291a-3p is a novel candidate agent that can be utilized for cell-free therapeutic intervention against aging and aging-related diseases.
T-CD9 expression could be a biomarker for poor prognosis in luminal A IBC, whereas S-CD9 expression could be a marker of good prognosis in luminal B (HER2-negative) IBC. Therefore, tumour compartment-specific analyses considering molecular subtypes are necessary to study the prognostic significance of CD9 expression in IBC.
Metastasis of cancers accounts for almost all cancer-related deaths. In this study, we report a PEGylated nanostructured platform for coadministration of doxorubicin (DOX) and imatinib (IMT) intended to effectively inhibit metastatic tumors. The DOX and IMT coloaded nanostructured system (DOX/IMT-N) is characterized by an excellent encapsulation potential for both drugs and shows sequential and sustained drug release in vitro. DOX/IMT-N significantly inhibited the in vitro proliferation of MDA-MB-231 and SK-MEL-28 cells. The inhibitory effect on in vitro proliferation of the cells was significantly greater than the effect of free DOX, DOX/IMT cocktail, or the nanostructured system housing DOX only (DOX-N). DOX/IMT-N remarkably enhanced cellular drug uptake, resulting in enhanced apoptosis, caused by significant increases in the expression levels of apoptotic marker proteins. Intravenous administration of DOX/IMT-N to MBA-MB-231 xenograft tumor-bearing mice resulted in significantly improved inhibition of tumor progression compared to that with DOX, DOX/IMT, or DOX-N. Therefore, the nanostructured DOX/IMT-N system could potentially aid in overcoming drug resistance in metastatic tumors and improve the effectiveness of metastatic tumor therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.