FeMgMn-LDH, a type of potential environmental remediation material, has been synthesized via a co-precipitation method, and its adsorption characteristics for nitrate were investigated in this study. It’s shown that the prepared FeMgMn-LDH is a promising adsorbent for anions removal, which has high buffer capacity (final pH remained between 9 and 10) and high reversibility, and can remove nitrate ions selectively though an anion-sieve effect. The maximum amount of nitrate adsorption is 10.56 N-mg g−1 at 25 ℃. The removal rate of nitrate ions can reach 86.26% with the adsorbent dose of 5 g/L in a real water. The competition order of coexisting anions on nitrate adsorption by FeMgMn-LDH is CO32− > PO43− > SO42−. The negative values of ΔG0 (from − 27.796 to − 26.426 kJ mol−1) and ΔH0 (− 6.678 kJ mol−1) indicate that the nitrate adsorption process on the FeMgMn-LDH is spontaneous and exothermic. The main adsorption mechanisms of nitrate removal from aqueous solutions by FeMgMn-LDH are electrostatic attraction and ion exchange.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.