The technology of high-density electropulsing has been applied to increase the performance of metallic materials since the 1990s and has shown significant advantages over traditional heat treatment in many aspects. However, the microstructure changes in electropulsing treatment (EPT) metals and alloys have not been fully explored, and the effects vary significantly on different material. When high-density electrical pulses are applied to metals and alloys, the input of electric energy and thermal energy generally leads to structural rearrangements, such as dynamic recrystallization, dislocation movements and grain refinement. The enhanced mechanical properties of the metals and alloys after high-density electropulsing treatment are reflected by the significant improvement of elongation. As a result, this technology holds great promise in improving the deformation limit and repairing cracks and defects in the plastic processing of metals. This review summarizes the effect of high-density electropulsing treatment on microstructural properties and, thus, the enhancement in mechanical strength, hardness and corrosion performance of metallic materials. It is noteworthy that the change of some properties can be related to the structure state before EPT (quenched, annealed, deformed or others). The mechanisms for the microstructural evolution, grain refinement and formation of oriented microstructures of different metals and alloys are presented. Future research trends of high-density electrical pulse technology for specific metals and alloys are highlighted.
In this work, Ti-6Al-4V (Ti64) porous structures were prepared by selective laser melting (SLM), and the effects of post heat treatment on its microstructural and mechanical properties were investigated. The results showed that as SLM samples were mainly composed of needle-like α′ martensite. Heat treatment at 750 °C caused α′ phase to decompose, forming a lamellar α+β mixed microstructure. As the heat treatment temperature increased to 950 °C, the width of lamellar α phase gradually increased to 3.1 μm. Heat treatment also reduced the compressive strength of the samples; however, it significantly improved the ductility of the porous Ti64. Moreover, heat treatment improved the energy absorption efficiency of the porous Ti64. The samples heat-treated at 750 °C had the highest energy absorption of 233.6 ± 1.5 MJ/m3 at ε = 50%.
Hierarchically porous hydroxyapatite (HHA) scaffolds were synthesized by template-assisted sol-gel chemistry. Polyurethane foam and a block copolymer were used as templates for inducing hierarchically porous structures. The HHA scaffolds exhibited open porous structures with large pores of 400–600 µm and nanoscale pores of ~75 nm. In comparison with conventional hydroxyapatite (CHA), HHA scaffolds exhibited significantly higher surface areas and increased protein adsorption for bovine serum albumin and vitronectin. Both the HHA and CHA scaffolds exhibited well in vitro biocompatibility. After 1 day, Saos-2 osteoblast-like cells bound equally well to both HHA and CHA scaffolds, but after 7 days in culture, cell proliferation was significantly greater on the HHA scaffolds (p < 0.01). High surface area and hierarchical porous structure contributed to the selective enhancement of osteoblast proliferation on the HHA scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.