Atmospheric-pressure chemical vapor deposition (CVD) is used to grow monolayer MoS 2 two-dimensional crystals at elevated temperatures on silicon substrates with a 300 nm oxide layer. Our CVD reaction is hydrogen free, with the sulfur precursor placed in a furnace separate from the MoO 3 precursor to individually control their heating profiles and provide greater flexibility in the growth recipe. We intentionally establish a sharp gradient of MoO 3 precursor concentration on the growth substrate to explore its sensitivity to the resultant MoS 2 domain growth within a relatively uniform temperature range. We find that the shape of MoS 2 domains is highly dependent upon the spatial location on the silicon substrate, with variation from triangular to hexagonal geometries. The shape change of domains is attributed to local changes in the Mo:S ratio of precursors (1:>2, 1:2, and 1:<2) and its influence on the kinetic growth dynamics of edges. These results improve our understanding of the factors that influence the growth of MoS 2 domains and their shape evolution.
In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl 3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g −1 at a current density of 100 mA g −1 (∼1.4 C). High Coulombic efficiency over a range of charge-discharge rates and stability over ∼150-200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge-discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. + cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device.aluminum-ion battery | urea electrolyte | ionicity | ionic liquid | energy storage C heap, high-rate (fast charge/discharge) rechargeable batteries with long cycle lives are urgently needed for grid-scale storage of renewable energy, as it is becoming increasingly important to replace fossil fuels (1). Lithium-ion batteries (LIBs) are expensive and have limited cycle life, which makes them nonideal for grid-scale energy storage. Furthermore, high-rate capability is necessary for use in the grid, under which conditions LIBs become increasingly unsafe due to the flammability of the electrolytes used. Batteries based on aluminum offer a viable alternative due to aluminum's three-electron redox properties (offers potential for high-capacity batteries), stability in the metallic state, and very high natural abundance. Furthermore, the development of these batteries based on nonflammable electrolytes of low toxicity is critical for minimizing safety hazard and environmental impact. Recently, our group developed a secondary Al battery system based on the reversible deposition/stripping of aluminum at the Al negative electrode and reversible intercalation/deintercalation of chloroaluminate anions at the graphite positive electrode in a nonflammable 1-ethyl-3-methylimidazolium chloroaluminate (EMIC-AlCl 3 ) IL electrolyte (7,8). A ratio of AlCl 3 /EMIC = 1.3 by mole was used such that Al 2 Cl 7 − was present in the (acidic) electrolyte to facilitate aluminum deposition (9). During charging, Al 2 Cl 7 − is reduced to deposit aluminum metal, and AlCl 4 − ions intercalate (to maintain neutrality) in graphite as carbon is oxidized. During discharge, this battery exhibited a cathode specific capacity of ∼70 mAh g −1 with a Coulombic efficiency (CE) of 97-98%, and ultrahigh charge/discharge rate (up to 5,000 mA g −1 ) for over 7,000 cycles. However, room for improvement exists as the parameter space for the Al battery remains largely unexplored. The three-electron redox properti...
We show that controlling the introduction time and the amount of sulphur (S) vapour relative to the WO3 precursor during the chemical vapour deposition (CVD) growth of WS2 is critical to achieving large crystal domains on the surface of silicon wafers with a 300 nm oxide layer. We use a two furnace system that enables the S precursor to be separately heated from the WO3 precursor and growth substrate. Accurate control of the S introduction time enabled the formation of triangular WS2 domains with edges up to 370 μm which are visible to the naked eye. The WS2 domains exhibit room-temperature photoluminescence with a peak value around ∼635 nm and a full-width at half-maximum (FWHM) of ∼12 nm. Selected area electron diffraction from different regions of the triangular WS2 domains showed that they are single crystal structures.
Synthetic 2D crystal films grown by chemical vapor deposition are typically polycrystalline, and determining grain size within domains and continuous films is crucial for determining their structure. Here we show that grain boundaries in the 2D transition metal dichalcogenide WS2, grown by CVD, can be preferentially oxidized by controlled heating in air. Under our developed conditions, preferential degradation at the grain boundaries causes an increase in their physical size due to oxidation. This increase in size enables their clear and rapid identification using a standard optical microscope. We demonstrate that similar treatments in an Ar environment do no show this effect, confirming that oxidation is the main role in the structural change. Statistical analysis of grain boundary (GB) angles shows dominant mirror formation. Electrical biasing across the GB is shown to lead to changes at the GB and their observation under an optical microscope. Our approach enables high-throughput screening of as-synthesized WS2 domains and continuous films to determine their crystallinity and should enable improvements in future CVD growth of these materials.
Low-cost aluminum-graphite batteries utilizing an AlCl 3 /urea ionic liquid analog are promising candidates for grid-scale electricity storage. This work describes the use of N-methyl and N-ethyl derivatives of urea, which yield lower viscosity electrolytes, as a result of a lower ionic concentration. These electrolytes have increased ionic conductivities, and higher discharge voltages due to the differences in concentrations of electroactive species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.