In this paper, we present a full attitude control of an efficient quadrotor tail-sitter VTOL UAV with flexible modes. This control system is working in all flight modes without any control surfaces but motor differential thrusts. This paper concentrates on the design of the attitude controller and the altitude controller. For the attitude control, the controller's parameters and filters are optimized based on the frequency response model which is identified from the sweep experiment. As a result, the effect of system flexible modes is easily compensated in frequency-domain by using a notch filter, and the resulting attitude loop shows superior tracking performance and robustness. In the coordinated flight condition, the altitude controller is structured as the feedforward-feedback parallel controller. The feedforward thrust command is calculated based on the current speed and the pitch angle. Tests in hovering, forward accelerating and forward decelerating flights have been conducted to verify the proposed control system. 1 authors are with the Mechatronics and Robotic Systems (MaRS) Laboratory,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.