To understand the transcriptional regulatory mechanism of host genes during the activation of defense responses in rice, we isolated WRKY transcription factors whose expressions were altered upon attack of the fungal pathogen Magnaporthe grisea, the causal agent of the devastating rice blast disease. A systematic expression analysis of OsWRKYs (Oryza sativa L. WRKYs) revealed that among 45 tested genes the expression of 15 genes was increased remarkably in an incompatible interaction between rice and M. grisea. Twelve of the M. grisea-inducible OsWRKY genes were also differentially regulated in rice plants infected with the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). In experiments with defense signaling molecules, the expression of two genes, OsWRKY45 and OsWRKY62, was increased in salicylic acid (SA)-treated leaves and the expression of three genes, OsWRKY10, OsWRKY82, and OsWRKY85 was increased by jasmonic acid (JA) treatment. OsWRKY30 and OsWRKY83 responded to both SA- and JA treatments. The expression profiles suggest that a large number of WRKY DNA-binding proteins are involved in the transcriptional activation of defense-related genes in response to rice pathogens.
The Arabidopsis (Arabidopsis thaliana) hexokinase 1 (AtHXK1) is recognized as an important glucose (Glc) sensor. However, the function of hexokinases as Glc sensors has not been clearly demonstrated in other plant species, including rice (Oryza sativa).To investigate the functions of rice hexokinase isoforms, we characterized OsHXK5 and OsHXK6, which are evolutionarily related to AtHXK1. Transient expression analyses using GFP fusion constructs revealed that OsHXK5 and OsHXK6 are associated with mitochondria. Interestingly, the OsHXK5DmTP-GFP and OsHXK6DmTP-GFP fusion proteins, which lack N-terminal mitochondrial targeting peptides, were present mainly in the nucleus with a small amount of the proteins seen in the cytosol. In addition, the OsHXK5NLS-GFP and OsHXK6NLS-GFP fusion proteins harboring nuclear localization signals were targeted predominantly in the nucleus, suggesting that these OsHXKs retain a dual-targeting ability to mitochondria and nuclei. In transient expression assays using promoter::luciferase fusion constructs, these two OsHXKs and their catalytically inactive alleles dramatically enhanced the Glc-dependent repression of the maize (Zea mays) Rubisco small subunit (RbcS) and rice a-amylase genes in mesophyll protoplasts of maize and rice. Notably, the expression of OsHXK5, OsHXK6, or their mutant alleles complemented the Arabidopsis glucose insensitive2-1 mutant, thereby resulting in wild-type characteristics in seedling development, Glc-dependent gene expression, and plant growth. Furthermore, transgenic rice plants overexpressing OsHXK5 or OsHXK6 exhibited hypersensitive plant growth retardation and enhanced repression of the photosynthetic gene RbcS in response to Glc treatment. These results provide evidence that rice OsHXK5 and OsHXK6 can function as Glc sensors.In higher plants, sugars are known to function as signaling molecules in addition to being a fundamental source of fuel for carbon and energy metabolism. Indeed, sugars have been shown to regulate physiological processes during the entire plant life cycle, from germination to flowering and senescence, and to function during defense responses to biotic and abiotic
Hexokinase (HXK) is a dual-function enzyme that both phosphorylates hexose to form hexose 6-phosphate and plays an important role in sugar sensing and signaling. To investigate the roles of hexokinases in rice growth and development, we analyzed rice sequence databases and isolated ten rice hexokinase cDNAs, OsHXK1 (Oryza sativa Hexokinase 1) through OsHXK10. With the exception of the single-exon gene OsHXK1, the OsHXKs all have a highly conserved genomic structure consisting of nine exons and eight introns. Gene expression profiling revealed that OsHXK2 through OsHXK9 are expressed ubiquitously in various organs, whereas OsHXK10 expression is pollen-specific. Sugars induced the expression of three OsHXKs, OsHXK2, OsHXK5, and OsHXK6, in excised leaves, while suppressing OsHXK7 expression in excised leaves and immature seeds. The hexokinase activity of the OsHXKs was confirmed by functional complementation of the hexokinase-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). OsHXK4 was able to complement this mutant only after the chloroplast-transit peptide was removed. The subcellular localization of OsHXK4 and OsHXK7, observed with green fluorescent protein (GFP) fusion constructs, indicated that OsHXK4 is a plastid-stroma-targeted hexokinase while OsHXK7 localizes to the cytosol.
Cell-wall invertase (CIN) catalyzes the hydrolysis of sucrose into glucose and fructose for the supply of carbohydrates to sink organs via an apoplastic pathway. To study the CIN genes in rice (Oryza sativa L.), we isolated cDNA clones showing amino acid similarity to the plant cell wall invertase proteins from a search of rice sequence databases. Profile analyses revealed that the cloned genes are expressed in unique patterns in various organs. For example, transcripts of OsCIN1, OsCIN2, OsCIN4, and OsCIN7 were detected in immature seeds whereas OsCIN3 gene expression was flower-specific. Further transcript analysis of these genes expressed in developing seeds indicated that OsCIN1, OsCIN2, and OsCIN7 might play an important role involving sucrose partitioning to the embryo and endosperm. Sucrose, a substrate of CINs, induced the accumulation of OsCIN1 transcripts in excised leaves and OsCIN2 in immature seeds, while the level of OsCIN5 was significantly down-regulated in excised leaves treated with sucrose. Infecting the tissues with rice blast (Magnaporthe grisea) as a biotic stressor increased the expression of OsCIN1, OsCIN4, and OsCIN5, suggesting that these genes may participate in a switch in metabolism to resist pathogen invasion. These results demonstrate that OsCIN genes play diverse roles involving the regulation of metabolism, growth, development, and stress responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.