Based on previously published hydroponic plant, planktonic bacterial, and soil microbial community research, manufactured nanomaterial (MNM) environmental buildup could profoundly alter soil-based food crop quality and yield. However, thus far, no single study has at once examined the full implications, as no studies have involved growing plants to full maturity in MNM-contaminated field soil. We have done so for soybean, a major global commodity crop, using farm soil amended with two high-production metal oxide MNMs (nano-CeO 2 and -ZnO). The results provide a clear, but unfortunate, view of what could arise over the long term: (i) for nano-ZnO, component metal was taken up and distributed throughout edible plant tissues; (ii) for nano-CeO 2 , plant growth and yield diminished, but also (iii) nitrogen fixation-a major ecosystem service of leguminous crops-was shut down at high nano-CeO 2 concentration. Juxtaposed against widespread land application of wastewater treatment biosolids to food crops, these findings forewarn of agriculturally associated human and environmental risks from the accelerating use of MNMs.nanoparticles | nanotechnology | agriculture
Because of their insolubility in water, nanoparticles have a limitation concerning toxicity experiments. The present study demonstrated a plant agar test for homogeneous exposure of nanoparticles to plant species. The effect of Cu nanoparticles on the growth of a plant seedling was studied, and bioaccumulation of nanoparticles was investigated. All tests were conducted in plant agar media to prevent precipitation of water-insoluble nanoparticles in test units. The plant species were Phaseolus radiatus (mung bean) and Triticum aestivum (wheat). Growth inhibition of a seedling exposed to different concentrations of Cu nanoparticles was examined. Copper nanoparticles were toxic to both plants and also were bioavailable. The 2-d median effective concentrations for P. radiatus and T. aestivum exposed to Cu nanoparticles were 335 (95% confidence level, 251-447) and 570 (450-722) mg/L, respectively. Phaseolus radiatus was more sensitive than T. aestivum to Cu nanoparticles. A cupric ion released from Cu nanoparticles had negligible effects in the concentration ranges of the present study, and the apparent toxicity clearly resulted from Cu nanoparticles. Bioaccumulation increased with increasing concentration of Cu nanoparticles, and agglomeration of particles was observed in the cells using transmission-electron microscopy-energy-dispersive spectroscopy. The present study demonstrated that the plant agar test was a good protocol for testing the phytotoxicity of nanoparticles, which are hardly water soluble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.