SummaryDrought conditions limit agricultural production by preventing crops from reaching their genetically predetermined maximum yields. Here, we present the results of field evaluations of rice overexpressing OsNAC9, a member of the rice NAC domain family. Root-specific (RCc3) and constitutive (GOS2) promoters were used to overexpress OsNAC9 and produced the transgenic RCc3:OsNAC9 and GOS2:OsNAC9 plants. Field evaluations over two cultivating seasons showed that grain yields of the RCc3:OsNAC9 and the GOS2:OsNAC9 plants were increased by 13%-18% and 13%-32% under normal conditions, respectively. Under drought conditions, RCc3:OsNAC9 plants showed an increased grain yield of 28%-72%, whilst the GOS2:OsNAC9 plants remained unchanged. Both transgenic lines exhibited altered root architecture involving an enlarged stele and aerenchyma. The aerenchyma of RCc3:OsNAC9 roots was enlarged to a greater extent than those of GOS2:OsNAC9 and non-transgenic (NT) roots, suggesting the importance of this phenotype for enhanced drought resistance. Microarray experiments identified 40 up-regulated genes by more than threefold (P < 0.01) in the roots of both transgenic lines. These included 9-cis-epoxycarotenoid dioxygenase, an ABA biosynthesis gene, calcium-transporting ATPase, a component of the Ca 2+ signalling pathway involved in cortical cell death and aerenchyma formation, cinnamoyl CoA reductase 1, a gene involved in lignin biosynthesis, and wall-associated kinases¸genes involved in cell elongation and morphogenesis. Interestingly, O-methyltransferase, a gene necessary for barrier formation, was specifically up-regulated only in the RCc3:OsNAC9 roots. Such up-regulated genes that are commonly and specifically up-regulated in OsNAC9 transgenic roots may account for the altered root architecture conferring increased drought resistance phenotype.
Electromagnetic scattering from multiple slits in a thick, perfectly conducting plane is investigated. The Fourier transform and mode matching are used to obtain the simultaneous equations. The simultaneous equations are solved to obtain a series solution which reduces to a closed form in the high‐frequency limit. The transmission coefficients are represented in fast convergent series which are efficient for numerical computations. Numerical computations are performed to illustrate their scattering behaviors in terms of frequency, slit size, and slit number.
With the overwhelming amount of textual information available in electronic formats on the web, there is a need for an efficient text summarizer capable of condensing large bodies of text into shorter versions while keeping the relevant information intact. Such a technology would allow users to get their information in a shortened form, saving valuable time. Since 1997, Microsoft Word has included a summarizer for documents, and currently there are companies that summarize breaking news and send SMS for mobile phones. I wish to create
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.