In this paper, for the first time, a comprehensive experimental study is performed on hydroforming process of metallic bellows. For this purpose, the effects of the main process parameters and their interactions on the characteristics of hydroformed metallic bellows are investigated using Response Surface Methodology (RSM). The selected parameters as input variables are internal pressure, die stroke and die fillet. The measured characteristics of metallic bellows are convolution height and thickness of the top point of bellows congress. A set of experiments are carried out and the convolution height and thickness of the top point of bellows congress are measured. Then a mathematical model is developed according to the second-order linear regression equations to maximize the convolution height and thickness of the top point of bellows congress. The results show that the increase in the convolution height and decrease in the thickness of the top point of bellows congress will occur by increasing the internal pressure and die stroke. Also, the convolution height and thickness of the top point of bellows congress are increased with an increase in the die fillet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.