In this paper we investigate the integration of object detection algorithms with eye-tracking data. The emerging technology of lightweight mobile eye-trackers enables realistic in-the-wild user experience experiments. Unfortunately, mobile eye-trackers generate a large amount of video data, which up to now requires manual analysis. This time-consuming and repetitive task renders processing large datasets economically infeasible. Our main contribution is the use of object detection algorithms to perform this analysis task automatically. We compare several object detection algorithms with regard to both speed and accuracy. To prove their functionality, we have recorded an eye-tracker shopping experiment and processed the data using object detection techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.