Disorder or sufficiently strong interactions can render a metallic state unstable, causing it to turn into an insulating one. Despite the fact that the interplay of these two routes to a vanishing conductivity has been a central research topic, a unifying picture has not emerged so far. Here, we establish that the two-dimensional Falicov-Kimball model, one of the simplest lattice models of strong electron correlation, does allow for the study of this interplay. In particular, we show that this model at particle-hole symmetry possesses three distinct thermodynamic insulating phases and exhibits Anderson localization. The previously reported metallic phase is identified as a finite-size feature due to the presence of weak localization. We characterize these phases by their electronic density of states, staggered occupation, conductivity, and the generalized inverse participation ratio. The implications of our findings for other strongly correlated systems are discussed.
Keywords: ground states and nonzero temperature states of transverse-field Ising model, entanglement, logarithmic negativity, density matrices and partial transpose, entanglement threshold and sudden death of entanglement Abstract Entanglement has developed into an essential concept for the characterization of phases and phase transitions in ground states of quantum many-body systems. In this work we use the logarithmic negativity to study the spatial entanglement structure in the transverse-field Ising chain both in the ground state and at nonzero temperatures. Specifically, we investigate the entanglement between two disjoint blocks as a function of their separation, which can be viewed as the entanglement analog of a spatial correlation function. We find sharp entanglement thresholds at a critical distance beyond which the logarithmic negativity vanishes exactly and thus the two blocks become unentangled, which holds even in the presence of long-ranged quantum correlations, i.e., at the system's quantum critical point. Using time-evolving block decimation, we explore this feature as a function of temperature and size of the two blocks and present a simple model to describe our numerical observations.
Constraints make hard optimization problems even harder to solve on quantum devices because they are implemented with large energy penalties and additional qubit overhead. The parity mapping, which has been introduced as an alternative to the spin encoding, translates the problem to a representation using only parity variables that encodes products of spin variables. In combining exchange interaction and single spin flip terms in the parity representation, constraints on sums and products of arbitrary k -body terms can be implemented without additional overhead in two-dimensional quantum systems.
Many-body localized phases may not only be characterized by their ergodicity breaking, but can also host ordered phases such as the many-body localized spin-glass (MBL-SG). The MBL-SG is challenging to access in a dynamical measurement and therefore experimentally since the conventionally used Edwards-Anderson order parameter is a two-point correlation function in time.In this work, we show that many-body localized spin-glass order can also be detected from twosite reduced density matrices, which we use to construct an eigenstate spin-glass order parameter. We find that this eigenstate spin-glass order parameter captures spin-glass phases in random Ising chains both in many-body eigenstates as well as in the nonequilibrium dynamics from a local in time measurement. We discuss how our results can be used to observe MBL-SG order within current experiments in Rydberg atoms and trapped ion systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.