Due to an increase in traffic collisions, the demand for prehospital medical services is on the rise, even in low-resource countries where emergency ambulance services have not been previously provided. To build a sustainable and continuous prehospital ambulance operation model, it is necessary to consider the medical system and economic conditions of the corresponding country. In an attempt to construct a prehospital ambulance operation model that ensures continuous operation, a pilot “emergency patient transporting service from field to hospital” operation was established for approximately three months in Kinshasa, the capital of the DR Congo. To construct a continuously operating model even after the pilot operation, willingness to pay (WTP) by type of emergency medical and transport service was investigated by implementing the contingent valuation method (CVM). Using CVM, the WTP for prehospital emergency services targeting ambulance services personnel, patients, policemen, and hospital staff participating in the pilot operation was calculated. The results of the pilot operation revealed that there were a total of 212 patients with a mean patient number of 2.4 per day. A total of 155 patients used the services for hospital transport, while 121 patients used the services for traffic collisions. Traffic collisions were the category in which ambulance services were most frequently needed (66.2%). Pay services were most frequently utilized in the home-visit services category (40.9%). Based on these results, eight independently operated ambulance operation models and sixteen models that utilize hospital medical personnel and policemen already belonging to existing institutions were proposed. In an effort to implement emergency medical ambulance services in the DR Congo, medical staff receiving pay for performance (incentive pay) should be deployed in the field and on call. Accordingly, with respect to sustainable development goals, various pay-for-service models should be used.
Brown adipose tissue (BAT) plays an important role in thermogenic regulation, which contributes to alleviating diet-induced obesity through uncoupling protein 1 (UCP1) expression. While cold exposure and physical exercise are known to increase BAT development and UCP1 expression, the contribution of hyperbaric oxygen (HBO) therapy to BAT maturation remains largely unknown. Here, we show that HBO treatment sufficiently increases BAT volumes and thermogenic protein levels in Sprague-Dawley rats. Through 18F-FDG PET/CT analysis, we found that exposure to high-pressure oxygen (1.5–2.5 ATA) for 7 consecutive days increased radiolabeled glucose uptake and BAT development to an extent comparable to cold exposure. Consistent with BAT maturation, thermogenic protein levels, such as those of UCP1 and peroxisome proliferator-activated receptor γ coactivator 1α (PGC−1α), were largely increased by HBO treatment. Taken together, we suggest HBO therapy as a novel method of inducing BAT development, considering its therapeutic potential for the treatment of metabolic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.