Melatonin's effect on hepatic differentiation of stem cells remains unclear. The aim of this study was to investigate the action of melatonin on hepatic differentiation as well as its related signaling pathways of human dental pulp stem cells (hDPSCs) and to examine the therapeutic effects of a combination of melatonin and hDPSC transplantation on carbon tetrachloride (CCl4 )-induced liver fibrosis in mice. In vitro hepatic differentiation was assessed by periodic acid-Schiff (PAS) staining and mRNA expression for hepatocyte markers. Liver fibrosis model was established by injecting 0.5 mL/kg CCl4 followed by treatment with melatonin (5 mg/kg, twice a week) and hDPSCs. In vivo therapeutic effects were evaluated by histopathology and by means of liver function tests including measurement of alanine transaminase (ALT), aspartate transaminase (AST), and ammonia levels. Melatonin promoted hepatic differentiation based on mRNA expression of differentiation markers and PAS-stained glycogen-laden cells. In addition, melatonin increased bone morphogenic protein (BMP)-2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist noggin. Furthermore, melatonin activated p38, extracellular signal-regulated kinase (ERK), and nuclear factor-κB (NF-κB) in hDPSCs. Melatonin-induced hepatic differentiation was attenuated by inhibitors of BMP, p38, ERK, and NF-κB. Compared to treatment of CCl4 -injured mice with either melatonin or hDPSC transplantation alone, the combination of melatonin and hDPSC significantly suppressed liver fibrosis and restored ALT, AST, and ammonia levels. For the first time, this study demonstrates that melatonin promotes hepatic differentiation of hDPSCs by modulating the BMP, p38, ERK, and NF-κB pathway. Combined treatment of grafted hDPSCs and melatonin could be a viable approach for the treatment of liver cirrhosis.
This study indicates that MCHDF is a separate pathologic entity with exclusive male predilection and earlier calcifications, different to HDF. Further studies are needed to understand the etiology of MCHDFs to provide various options for treatment, and to clarify the mechanisms of eruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.