Objective To investigate the molecular basis of drug resistance in pancreatic cancer. Methods The expression of Nrf2 levels in pancreatic cancer tissues and cell lines was analyzed. Clinical relevance between Nrf2 activation and drug resistance was demonstrated by measuring cell viability after Nrf2 and ABCG2 regulation by over-expression or knockdown of these genes. Activity of ABCG2 was measured by Hoechst 33342 staining. Results Abnormally elevated Nrf2 protein levels were observed in pancreatic cancer tissues and cell lines relative to normal pancreatic tissues. Increasing Nrf2 protein levels either by over-expression of exogenous Nrf2 or by activating endogenous Nrf2 resulted in increased drug resistance. Conversely, a reduction in endogenous Nrf2 protein levels or inactivation of endogenous Nrf2 resulted in decreased drug resistance. These changes in drug resistance or sensitivity were also positively correlated to the expression levels of Nrf2 downstream genes. Similarly, the expression of ABCG2 was correlated with drug resistance. Conclusions Since the intrinsic drug resistance of pancreatic cancers is, in part, due to abnormally elevated Nrf2 protein levels, further research on regulating Nrf2 activity may result in the development of novel pancreatic cancer therapies.
The present study shows that activation of microglial NADPH oxidase and production of reactive oxygen species (ROS) is associated with thrombin-induced degeneration of nigral dopaminergic neurons in vivo. Seven days after thrombin injection in the rat substantia nigra (SN), tyrosine hydroxylase immunocytochemistry showed a significant loss of nigral dopaminergic neurons. This cell death was accompanied by localization of terminal deoxynucleotidyl transferase-mediated fluorecein UTP nick-end labelling (TUNEL) staining within dopaminergic neurons. This neurotoxicity was antagonized by the semisynthetic tetracycline derivative, minocycline, and the observed neuroprotective effects were associated with the ability of minocycline to suppress NADPH oxidase-derived ROS production and pro-inflammatory cytokine expression, including interleukin-1b and inducible nitric oxide synthase, from activated microglia. These results suggest that microglial NADPH oxidase may be a viable target for neuroprotection against oxidative damage.
We describe the potential benefit of PIK-75 in combination of gemcitabine to treat pancreatic cancer in a preclinical mouse model. The effect of PIK-75 on the level and activity of NRF2 was characterized using various assays including reporter gene, quantitative PCR, DNA-binding and western blot analyses. Additionally, the combinatorial effect of PIK-75 and gemcitabine was evaluated in human pancreatic cancer cell lines and a xenograft model. PIK-75 reduced NRF2 protein levels and activity to regulate its target gene expression through proteasome-mediated degradation of NRF2 in human pancreatic cancer cell lines. PIK-75 also reduced the gemcitabine-induced NRF2 levels and the expression of its downstream target MRP5. Co-treatment of PIK-75 augmented the antitumor effect of gemcitabine both in vitro and in vivo. Our present study provides a strong mechanistic rationale to evaluate NRF2 targeting agents in combination with gemcitabine to treat pancreatic cancers.
The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is critical for both normal mammary gland development and malignant transformation. It has been reported that the IGF-1 stimulates breast cancer cell proliferation and is upregulated in tumors with BRCA1/2 mutations. We report here that IGF-1 is negatively regulated by BRCA1 at the transcriptional level in human breast cancer cells. BRCA1 knockdown (BRCA1-KD) induces the expression of IGF-1 mRNA in MCF7 cells in an estrogen receptor α (ERα)-dependent manner. We found that both BRCA1 and ERα bind to the endogenous IGF-1 promoter region containing an estrogen-responsive element-like (EREL) site. BRCA1-KD does not significantly affect ERα binding on the IGF-1 promoter. Reporter analysis demonstrates that BRCA1 could regulate IGF-1 transcripts via this EREL site. In addition, enzyme-linked immunosorbent assay revealed that de-repression of IGF-1 transcription by BRCA1-KD increases the level of extracellular IGF-1 protein, and secreted IGF-1 seems to increase the phospho-IGF-1Rβ and activate its downstream signaling pathway. Blocking the IGF-1/IGF-1R/phosphoinositide 3-kinase (PI3K)/AKT pathway either by a neutralizing antibody or by small-molecule inhibitors preferentially reduces the proliferation of BRCA1-KD cells. Furthermore, the IGF-1-EREL-Luc reporter assay demonstrates that various inhibitors, which can inhibit the IGF-1R pathway, can suppress this reporter activity. These findings suggest that BRCA1 defectiveness keeps turning on IGF-1/PI3K/AKT signaling, which significantly contributes to increase cell survival and proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.