Flowable resins used for dental restoration are subject to biofilm formation. Zinc has antibacterial properties. Thus, we prepared a zinc-doped phosphate-based glass (Zn-PBG) to dope a flowable resin and evaluated the antibacterial activity of the composite against Streptococcus mutans (S. mutans) to extrapolate the preventative effect toward secondary caries. The composites were prepared having 0 (control), 1.9, 3.8, and 5.4 wt.% Zn-PBG. The flexural strength, elastic modulus, microhardness, depth of cure, ion release, inhibition zone size, and number of colony-forming units were evaluated and analyzed using ANOVA. The flexural strength of the control was significantly higher than those of Zn-PBG samples (p < 0.05). However, all samples meet the International Standard, ISO 4049. The microhardness was not significantly different for the control group and 1.9 and 3.8 wt.% groups, but the 5.4 wt.% Zn-PBG group had a significantly lower microhardness (p < 0.05). Further, the composite resins increasingly released P, Ca, Na, and Zn ions with an increase in Zn-PBG content (p < 0.05). The colony-forming unit count revealed a significant reduction in S. mutans viability (p < 0.05) with increase in Zn-PBG content. Therefore, the addition of Zn-PBG to flowable composite resins enhances antibacterial activity and could aid the prevention of secondary caries.
Alteromonas sp. GNUM-1 is known to degrade agar, the main cell wall component of red macroalgae, for their growth. A putative agarase gene (agaG1) was identified from the mini-library of GNUM-1, when extracellular agarase activity was detected in a bacterial transformant. The nucleotide sequence revealed that AgaG1 had significant homology to GH16 agarases. agaG1 encodes a primary translation product (34.7 kDa) of 301 amino acids, including a 19-amino-acid signal peptide. For intracellular expression, a gene fragment encoding only the mature form (282 amino acids) was cloned into pGEX-5X-1 in Escherichia coli, where AgaG1 was expressed as a fusion protein with GST attached to its N-terminal (GST-AgaG1). GST-AgaG1 purified on a glutathione sepharose column had an apparent molecular weight of 59 kDa on SDS-PAGE, and this weight matched with the estimated molecular weight (58.7 kDa). The agarase activity of the purified protein was confirmed by the zymogram assay. GST-AgaG1 could hydrolyze the artificial chromogenic substrate, p-nitrophenyl-β-D-galactopyranoside but not p-nitrophenyl-α-D-galactopyranoside. The optimum pH and temperature for GST-AgaG1 activity were identified as 7.0 and 40 °C, respectively. GST-AgaG1 was stable up to 40 °C (100 %), and it retained more than 70 % of its initial activity at 45 °C after heat treatment for 30 min. The K m and V max for agarose were 3.74 mg/ml and 23.8 U/mg, respectively. GST-AgaG1 did not require metal ions for its activity. Thin layer chromatography analysis, mass spectrometry, and (13)C-nuclear magnetic resonance spectrometry of the GST-AgaG1 hydrolysis products revealed that GST-AgaG1 is an endo-type β-agarase that hydrolyzes agarose and neoagarotetraose into neoagarobiose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.