Three-dimensional (3D) printing is an attractive technology in dentistry. Acrylic-based 3D printed resin parts have to undergo postcuring processes to enhance their mechanical and biological properties, such as UV-light and thermal polymerization. However, no previous studies have revealed how the postcuring temperature influences the biocompatibility of the produced parts. Therefore, we postprocessed 3D printed denture teeth resin under different postcuring temperatures (40, 60 and 80 °C) for different periods (15, 30, 60, 90 and 120 min), and evaluated their flexural properties, Vickers hardness, cell cytotoxicity, cell viability, and protein adsorption. In addition, confocal laser scanning was used to assess the condition of human gingival fibroblasts. It was found that increasing the postcuring temperature significantly improved the flexural strength and cell viability. The flexural strength and cell viability were 147.48 ± 5.82 MPa (mean ± standard deviation) and 89.51 ± 7.09%, respectively, in the group cured at 80 °C for 120 min, which were higher than the values in the 40 and 60 °C groups. The cell cytotoxicity increased in the 40 °C groups and for longer cultivation time. Confocal laser scanning revealed identifiable differences in the morphology of fibroblasts. This study has confirmed that the postcuring temperature influences the final mechanical and biological properties of 3D printed resin.
Purpose To evaluate the accuracy of three digitization methods for the maxillary dental arch. Materials and Methods A maxillary typodont with various tooth preparation designs was used as the reference model. The scanned data were classified into direct scanning (DS), cast scanning (CS), and impression scanning (IS) groups according to the techniques applied for digitization (n = 10/group). An intraoral scanner was used for the DS group. Impressions obtained with polyether impression material were scanned with a tabletop scanner for the IS group. For the CS group, the definitive casts fabricated from the obtained impressions were scanned with the same tabletop scanner. The accuracy (trueness and precision) of the produced virtual dental casts was evaluated with specialized software. The full‐arch and individual abutment deviations were measured with regard to root mean square error (RMSE) values. Data were analyzed with statistical software with an α0.33em=0.33em0.05. Results The RMSE values for both trueness and precision were lowest in the IS group, followed by the CS and DS groups, with statistically significant differences among the groups (p < 0.05). The trueness of individual abutments was significantly higher in the IS group than in the DS group. In addition, the trueness of individual abutments was affected by the location of the abutments in the DS group, whereas it did not differ between individual abutments in the CS and IS groups. Conclusions These findings suggest that the IS method is an accurate digitization technique for the creation of a virtual dental cast.
This study aimed at evaluating the visible light mediated antimicrobial and osteogenic applications of noble metal, such as gold (Au) and platinum (Pt) coated titania (TiO2) nanotubes (NTs). In this study, the Au and Pt nanoparticles (NPs) were deposited on anodized 100 nm TiO2 NTs by ion plasma sputtering. The Au and Pt NPs were mainly deposited on the top surface layer of TiO2 NTs and showed light absorbance peaks around the 470 and 600 nm visible light region used in this study, as seen from the surface characterization. From the results of antibacterial activity test, Au and Pt NPs that were deposited on TiO2 NTs showed excellent antibacterial activity under 470 nm visible light irradiation due to the plasmonic photocatalysis based on the localized surface plasmon resonance effect of the Au and Pt NPs. In addition, alkaline phosphate activity test and quantitative real-time PCR assay of osteogenic related genes resulted that these NPs promoted the osteogenic functionality of human mesenchymal stem cells (hMSCs) under 600 nm visible light irradiation, because of the synergic effect of the photothermal scattering of noble metal nanoparticles and visible light low-level laser therapy (LLLT). Therefore, the combination of noble metal coated TiO2 NTs and visible light irradiation would be expected to perform permanent antibacterial activity without the need of an antibacterial agent besides promoting osteogenic functionality.
With the development of nanotechnology, many researches have shown that nanometer-scaled materials especially TiO2nanotube have a positive effect on cellular behavior and surface characteristics of implant, which are considered to be crucial factors in osseointegration. However, it has not yet been verified which nanotube size is effective in osseointegrationin vivo. The aim of this study was to evaluate the effect of implant surface-treated with different size of TiO2nanotubes on osseointegration in rat femur. The customized implants (threaded and nonthreaded type), surface-treated with different diameter of TiO2nanotubes (30 nm, 50 nm, 70 nm, and 100 nm nanotube), were placed on both sides of the femur of 50 male Sprague-Dawley rats (6 weeks old). Rats were sacrificed at 2 and 6 weeks following surgery; then the specimens were collected by perfusion fixation and the osseointegration of implants was evaluated by radiographic and histologic analyses and removal torque value test. The mean of bone area (%) and the mean of removal torque were different in each group, indicating that the difference in TiO2nanotube size may influence new bone formation and osseointegration in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.