Although the possible cellular roles of several ubiquitin-specific proteases (UBPs) were identified in Arabidopsis, almost nothing is known about UBP homologs in rice, a monocot model plant. In this report, we searched the rice genome database ( http://signal.salk.edu/cgi-bin/RiceGE ) and identified 21 putative UBP family members (OsUBPs) in the rice genome. These OsUBP genes each contain a ubiquitin carboxyl-terminal hydrolase (UCH) domain with highly conserved Cys and His boxes and were subdivided into 9 groups based on their sequence identities and domain structures. RT-PCR analysis indicated that rice OsUBP genes are expressed at varying degrees in different rice tissues. We isolated a full-length cDNA clone for OsUBP6, which possesses not only a UCH domain, but also an N-terminal ubiquitin motif. Bacterially expressed OsUBP6 was capable of dismantling K48-linked tetraubiquitin chains in vitro. Quantitative real-time RT-PCR indicated that OsUBP6 is constitutively expressed in different tissues of rice plants. An in vivo targeting experiment showed that OsUBP6 is predominantly localized to the nucleus in onion epidermal cells. We also examined how knock-out of OsUBP6 affects developmental growth of rice plants. Although homozygous T3 osubp6 T-DNA insertion mutant seedlings displayed slower growth relative to wild type seedlings, mature mutant plants appeared to be normal. These results raise the possibility that loss of OsUBP6 is functionally compensated for by an as-yet unknown OsUBP homolog during later stages of development in rice plants.
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT A total of 23 elite rice cultivars from eight countries were evaluated for cold tolerance using two screening methods at Chuncheon Substation, National Institute of Crop Science (NICS), Republic of Korea. The rice cultivars Jinbu, Mustaqillik, and Avangard showed cold tolerance and high spikelet fertility (63-79%) in cold-water irrigation screening. Under greenhouse screening, five cultivars (Giza 177, Avangard, Mustaqillik, Jinbu, and Jungan) showed high cold tolerance and high spikelet fertility (71-81%). Simple sequence repeat (SSR) marker analysis of 21 genotypes revealed two major clusters, the japonica and indica groups, with a genetic similarity of 0.69. Out of 21 rice cultivars, only four (Giza 178 from Egypt, Attey and Zakha from Bhutan, and Millin from Australia) fell under the indica cluster. The cold-tolerant varieties Jinbu, Mustaqillik, and Avangard were clustered with the japonica group, which had genetic similarity of 0.83. These varieties are considered as potential germplasm that will help diversify the japonica gene pool for cold-tolerant rice breeding. A one-way linear analysis of variance identified a significant relationship between individual alleles and traits. Three SSR markers were significantly associated with spikelet fertility under cold-water irrigation on chromosomes 1, 2, and 7. Five SSR markers were associated with spikelet fertility under a cool-environment greenhouse on chromosomes 8, 9, 10, and 12. The SSR markers associated with cold tolerance may also be useful as selection markers in indica/japonica cross combinations to improve cold tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.