Air transportation has been being expanded remarkably, and its growth is expected to continue in the coming decades. Environmental issues and airlines require gas turbine manufacturers to produce environmentally friendly gas-turbine engines with lower emissions and improved specific fuel consumption. These requirements can be met by incorporating heat exchangers into gas turbines for intercooling and recuperation. Relevant research in such areas as the design of a heat exchanger matrix, materials selection, and manufacturing technology and optimization has been carried out by a variety of researchers. These works are reviewed in this paper. The recent advance in technologies appears to herald the development of intercoolers and recuperators for civil aeroplane gas turbines. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.
The first esterification reactor in the continuous polymerization of poly(ethylene terephthalate) has been analyzed by solving the material balances for the two-phase system with respect to the solubility of terephthalic acid. The Newton-Raphson method was used to solve the material balance equations instead of the Simplex method that is frequently used for finding a minimum point of a residual rather than a solution of an equation. A solution for the material balance equations, with the constraint of non-zero liquid phase fraction, could not be obtained with the solubility data of Yamada et al., but could be obtained with solubilities over a minimum value that is larger than their data. Thus, the solubility data of Yamada et al. are considered to be too small. On the other hand, the solubility data of Baranova and Kremer are so large that they gave a solution with the liquid phase only. Based on our results, several typical solubility curves satisfying the constraint of a non-zero liquid phase fraction are suggested in this study; we studied the reaction characteristics of the system using these curves. A higher temperature and a lower pressure are preferred for reducing the content of diethylene glycol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.