A bacterial strain, B65-1, which showed strong antimicrobial activity, was isolated from Chungkook-Jang, a traditional Korean fermented-soybean food with antimicrobial properties. Based on carbon utilization pattern and partial 16S rRNA sequence analysis, the B65-1 strain was identified as Bacillus licheniformis. An antibiotic compound, active against bacteria and yeast such as Staphylococcus aureus, Escherichia coli, and Candida albicans, was isolated by various chromatographic procedures from culture filtrates of B. licheniformis B65-1. The purified antibiotic was identified to be phenylacetic acid, with the molecular formula C(8)H(8)O(2) by analyses of EI-MS and NMR. The phenylacetic acid was detected in fermented soybean made with the strain B65-1 as a starter, but was not present in extracts of nonfermented soybean. Our results indicated that the phenylacetic acid produced by B. licheniformis during fermentation of soybean is one of the main compounds of antimicrobial activity of Chungkook-Jang.
Plants are limited to protect themselves against environmental stresses including drought. Thus, plants develop a wide range of strategies to cope with stress situations. Under conditions of water deficiency, drought escape and drought tolerance are two important strategies to ensure plant growth. There is limited reported information dealing with the role of microbes on the improvement of drought tolerance. Here, we provide an overview of current knowledge on the general features of the induction of drought tolerance mediated by inoculation of plants with fungi, bacteria, and viruses, and several bacterial determinants and plant signaling transduction pathways revealed by classic physiological or morphological observations and recent ''Omics'' technology. Overall, the application of microbes provides new insights into novel protocols to improve plant defense responses to drought, an important component of agricultural production systems affected by a changing climate.
Plants guard themselves against pathogen attack using multi-layered defense mechanism. Calcium represents an important secondary messenger during such defense responses. Upon examination of a pepper cDNA library, we observed that the gene CaSRC2-1 (Capsicum annum SRC2-1) was upregulated significantly in response to infection with the type II non-host pathogen Xanthomonas axonopodis pv. glycines 8 ra, which elicits a hypersensitive response. CaSRC2-1 encodes a protein that contains a C2 domain and it exhibits a high degree of homology to the protein Soybean genes regulated by cold 2 (SRC2). However, little is known about how SRC2 expression is elicited by biotic stresses such as pathogen challenge. Further sequence analysis indicated that the CaSRC2-1 C2 domain is unique and contain certain amino acids that are conserved within the C2 domains of other plants and animals. CaSRC2-1 transcription was up-regulated under both biotic and abiotic stress conditions, including bacterial and viral pathogen infection, CaCl(2) and cold treatment, but unaffected by treatment with plant defense-related chemicals such as salicylic acid, methyl jasmonic acid, ethephone, and abscisic acid. Intriguingly, under steady state conditions, CaSRC2-1 was expressed only in the root system. A CaSRC2-1-GFP fusion protein was used to determine localization to the plasma membrane. A fusion protein lacking the C2 domain failed to target the membrane but remained in the cytoplasm, indicating that the C2 domain plays a critical role in localization. Thus, CaSRC2-1 encodes a novel C2 domain-containing protein that targets the plasma membrane and plays a critical role in the abiotic stress and defense responses of pepper plants.
Energy harvesting (EH) technologies to power small sized electronic devices are attracting great attention. Wasted energy in a vehicle’s rotating tire has a great potential to enable self-powered tire pressure monitoring sensors (TPMS). Piezoelectric type energy harvesters can be used to collect vibrational energy and power such systems. Due to the presence of harsh acceleration in a rotating tire, a design tradeoff needs to be studied to prolong the harvester’s fatigue life as well as to ensure sufficient power generation. However, the design by traditional deterministic design optimization (DDO) does not show reliable performance due to the lack of consideration of various uncertainty factors (e.g., manufacturing tolerances, material properties, and loading conditions). In this study, we address a new EH design formulation that considers the uncertainty in car speed, dimensional tolerances and material properties, and solve this design problem using reliability-based design optimization (RBDO). The RBDO problem is formulated to maximize compactness and minimize weight of a TPMS harvester while satisfying power and durability requirements. A transient analysis has been done to measure the time varying response of EH such as power generation, dynamic strain, and stress. A conservative design formulation is proposed to consider the expected power from varied speed and stress at higher speed. When compared to the DDO, the RBDO results show that the reliability of EH is increased significantly by scarifying the objective function. Finally, experimental test has been conducted to demonstrate the merits of RBDO design over DDO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.