In recent times, optimization began to be popular in the turbomachinery field. The development of computational fluid dynamics (CFD) analysis and optimization technology provides the opportunity to maximize the performance of hydro turbines. The optimization techniques are focused mainly on the rotating components (runner and guide vane) of the hydro turbines. Meanwhile, fixed flow passages (stay vane, casing, and draft tube) are essential parts for the proper flow uniformity in the hydro turbines. The suppression of flow instabilities in the fixed flow passages is an inevitable process to ensure the power plant safety by the reduction of vortex-induced vibration and pressure pulsation in the hydro turbines. In this study, a CFD-based shape design optimization process is proposed with response surface methodology (RSM) to improve the flow uniformity in the fixed flow passages of a Francis hydro turbine model. The internal flow behaviors were compared between the initial and optimal shapes of the stay vane, casing, and the draft tube with J-Groove. The optimal shape design process for the fixed flow passages proved its remarkable effects on the improvement of flow uniformity in the Francis hydro turbine.
Abstract:In this study, a Francis turbine with specific speed of 130 m-kW was designed on the basis of the port area and loss analysis. The meridional shape of the runner was designed focusing mainly on the combination of the guide vane loss analysis and experience. The runner blade inlet and outlet angles were designed by calculation of Euler's head, while the port area of blade was modified by keeping constant angles of the blade at inlet and outlet. The results show that the effect of the port area of runner blade on the flow exit angle from runner passage is significant. A correct flow exit angle reduces the energy loss at the draft tube, thereby improving the efficiency of the turbine. The best efficiency of 92.6% is achieved by this method, which is also similar to the design conditions by the one dimension loss analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.