This paper presents a sensorless control for induction machines, using square-wave voltage injection. Multiple saliencies are considered, as well as saliency orientation shift according to loading conditions. These two nonideal phenomena severely degrade the performance of sensorless controls for induction machines. Multiple saliencies cause the position error signal to become distorted and make estimation of the rotor flux position difficult. Saliency orientation shift causes the estimated rotor flux position to drift from the actual rotor flux position, depending on the torque and speed. In this study, a sensorless algorithm based on square-wave voltage injection is adopted for induction machine control. When square-wave voltage is injected into the estimated synchronous reference frame, the harmonics of the error signal are lower than those of the conventional sinusoidal injection method. In addition, by injecting a square wave into the q-axis of the estimated synchronous reference frame instead of the d-axis, the saliency orientation shift is made smaller. Based on this study using square-wave voltage injection into the q-axis, the flux can be estimated with less error. Because of its enhanced rotor flux estimation performance, the proposed method provides better torque controllability than the conventional sinusoidal voltage injection method. Experimental results confirm the effectiveness of the proposed technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.