We present a detailed study of the morphology and composition of tungsten oxide (WO3) thin films, grown by radio frequency magnetron reactive sputtering at substrate temperatures varied from room temperature (RT) to 500 °C, using infrared (IR) absorption, Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). This work includes valuable new far-IR results about structural changes in microcrystalline WO3. Both IR absorption and Raman techniques reveal an amorphous sample grown at RT and initial crystallization into monoclinic structures for samples grown at temperatures between 100 and 300 °C. The Raman spectra of the samples grown at high temperatures indicate, apart from the monoclinic structure, a strain effect, with a distribution revealed by confocal Raman mapping. XPS indicates that the film surface maintains the stoichiometry WOx, with a value of x slightly greater than 3 at RT due to oxygen contamination, which decreases with increasing temperature.
We present a comparative microscopic and spectroscopic study of the morphology and composition of WO 3 and W 0.95 Ti 0.05 O 3 thin films, grown by radio-frequency magnetron reactive sputtering at substrate temperatures varied from room temperature to 500°C, using atomic force microscopy (AFM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). With increasing growth temperature, the AFM results show increase in the average crystallite size and in the surface roughness for both undoped and doped samples. The AFM data, along with the Raman results, clearly indicate that for the given set of experimental conditions, higher growth temperatures are required to obtain crystalline Ti-doped WO 3 films than for WO 3 films. Also, the Raman results suggest a potential phase transformation from a monoclinic WO 3 structure to an orthorhombic, but more probably a tetragonal, configuration in the W 0.95 Ti 0.05 O 3 thin films. This remark is based on the observed shifting, with Ti doping, to lower frequencies of the Raman peaks corresponding to W-O-W stretching modes of WO 3 at 806 and 711 cm -1 to 793 and 690 cm -1 , respectively. XPS data indicate that the doped material has a reduced WO 3-x stoichiometry at the surface, with the presence of W 6? and W 5? oxidation states; this observation could also be related to the existence of a different structural phase of this material, corroborating with the Raman measurements.
BL-11C, a new protein crystallography beamline, is an in-vacuum undulator-based microfocus beamline used for macromolecular crystallography at the Pohang Accelerator Laboratory and it was made available to users in June 2017. The beamline is energy tunable in the range 5.0–20 keV to support conventional single- and multi-wavelength anomalous-dispersion experiments against a wide range of heavy metals. At the standard working energy of 12.659 keV, the monochromated beam is focused to 4.1 µm (V) × 8.5 µm (H) full width at half-maximum at the sample position and the measured photon flux is 1.3 × 1012 photons s−1. The experimental station is equipped with a Pilatus3 6M detector, a micro-diffractometer (MD2S) incorporating a multi-axis goniometer, and a robotic sample exchanger (CATS) with a dewar capacity of 90 samples. This beamline is suitable for structural determination of weakly diffracting crystalline substances, such as biomaterials, including protein, nucleic acids and their complexes. In addition, serial crystallography experiments for determining crystal structures at room temperature are possible. Herein, the current beamline characteristics, technical information for users and some recent scientific highlights are described.
The current size‐exclusion chromatography–small‐angle X‐ray scattering setup was shown to be suitable for preparing publication‐quality data and acquiring reliable three‐dimensional structural models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.