Leptin is a pivotal regulator of energy and glucose homeostasis, and defects in leptin signaling result in obesity and diabetes. The ATP-sensitive potassium (K ATP ) channels couple glucose metabolism to insulin secretion in pancreatic β-cells. In this study, we provide evidence that leptin modulates pancreatic β-cell functions by promoting K ATP channel translocation to the plasma membrane via AMP-activated protein kinase (AMPK) signaling. K ATP channels were localized mostly to intracellular compartments of pancreatic β-cells in the fed state and translocated to the plasma membrane in the fasted state. This process was defective in leptin-deficient ob/ob mice, but restored by leptin treatment. We discovered that the molecular mechanism of leptin-induced AMPK activation involves canonical transient receptor potential 4 and calcium/calmodulindependent protein kinase kinase β. AMPK activation was dependent on both leptin and glucose concentrations, so at optimal concentrations of leptin, AMPK was activated sufficiently to induce K ATP channel trafficking and hyperpolarization of pancreatic β-cells in a physiological range of fasting glucose levels. There was a close correlation between phospho-AMPK levels and β-cell membrane potentials, suggesting that AMPK-dependent K ATP channel trafficking is a key mechanism for regulating β-cell membrane potentials. Our results present a signaling pathway whereby leptin regulates glucose homeostasis by modulating β-cell excitability.T he K ATP channel, an inwardly rectifying K + channel that consists of pore-forming Kir6.2 and regulatory sulfonylurea receptor 1 (SUR1) subunits (1), functions as an energy sensor: its gating is regulated mainly by the intracellular concentrations of ATP and ADP. In pancreatic β-cells, K ATP channels are inhibited or activated in response to the rise or fall in blood glucose levels, leading to changes in membrane excitability and insulin secretion (2, 3). Thus, K ATP channel gating has been considered an important mechanism in coupling blood glucose levels to insulin secretion. Recently, trafficking of K ATP channels to the plasma membrane was highlighted as another important mechanism for regulating K ATP channel activity (4-6).AMP-activated protein kinase (AMPK) is a key enzyme regulating energy homeostasis (7). We recently demonstrated that K ATP channels are recruited to the plasma membrane in glucosedeprived conditions via AMPK signaling in pancreatic β-cells (6). Inhibition of AMPK signaling significantly reduces K ATP currents, even after complete wash-out of intracellular ATP (6). Given these results, we proposed a model that recruitment of K ATP channels to the plasma membrane via AMPK signaling is crucial for K ATP channel activation in low-glucose conditions. However, the physiological relevance of this model remains unclear because pancreatic β-cells had to be incubated in media containing less than 3 mM glucose to recruit a sufficient number of K ATP channels to the plasma membrane (6). We thus hypothesized that there should be an e...
In the brain, a reduction in extracellular osmolality causes water-influx and swelling, which subsequently triggers Cl − - and osmolytes-efflux via volume-regulated anion channel (VRAC). Although LRRC8 family has been recently proposed as the pore-forming VRAC which is activated by low cytoplasmic ionic strength but not by swelling, the molecular identity of the pore-forming swelling-dependent VRAC (VRAC swell ) remains unclear. Here we identify and characterize Tweety-homologs (TTYH1, TTYH2, TTYH3) as the major VRAC swell in astrocytes. Gene-silencing of all Ttyh1/2/3 eliminated hypo-osmotic-solution-induced Cl − conductance (I Cl,swell ) in cultured and hippocampal astrocytes. When heterologously expressed in HEK293T or CHO-K1 cells, each TTYH isoform showed a significant I Cl,swell with similar aquaporin-4 dependency, pharmacological properties and glutamate permeability as I Cl,swell observed in native astrocytes. Mutagenesis-based structure-activity analysis revealed that positively charged arginine residue at 165 in TTYH1 and 164 in TTYH2 is critical for the formation of the channel-pore. Our results demonstrate that TTYH family confers the bona fide VRAC swell in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.