In the construction industry, it is difficult to predict occupational accidents because various accident characteristics arise simultaneously and organically in different types of work. Furthermore, even when analyzing occupational accident data, it is difficult to deduce meaningful results because the data recorded by the incident investigator are qualitative and include a wide variety of data types and categories. Recently, numerous studies have used machine learning to analyze the correlations in such complex construction accident data; however, heretofore the focus has been on predicting severity with various variables, and several limitations remain when deriving the correlations between features from various variables. Thus, this paper proposes a data processing procedure that can efficiently manipulate accident data using optimal machine learning techniques and derive and systematize meaningful variables to rationally approach such complex problems. In particular, among the various variables, the most influential variables are derived through methods such as clustering, chi-square, Cramer’s V, and predictor importance; then, the analysis is simplified by optimally grouping the variables. For accident data with optimal variables and elements, a predictive model is constructed between variables, using a support vector machine and decision-tree-based ensemble; then, the correlation between the dependent and independent variables is analyzed through an alluvial flow diagram for several cases. Therefore, a new processing procedure has been introduced in data preprocessing and accident prediction modelling to overcome difficulties from complex and diverse construction occupational accident data, and effective accident prevention is possible by deriving correlations of construction accidents using this process.
Mechanical waves, such as ultrasonic waves, have shown promise for use in non-destructive methods used in the evaluation of concrete properties, such as strength and elasticity. However, accurate estimation of the concrete compressive strength is difficult if only the pressure waves (P-waves) are considered, which is common in non-destructive methods. P-waves cannot reflect various factors such as the types of aggregates and cement, the fine aggregate modulus, and the interfacial transition zone, influencing the concrete strength. In this study, shear waves (S-waves) and Rayleigh waves (R-waves) were additionally used to obtain a more accurate prediction of the concrete strength. The velocities of three types of mechanical waves were measured by recent ultrasonic testing methods. Two machine learning models—a support vector machine (SVM) and an artificial neural network (ANN)—were developed within the MATLAB programming environment. Both models were successfully used to model the relationship between the mechanical wave velocities and the concrete compressive strength. The machine learning model that included the P-, S-, and R-wave velocities was more accurate than the model that included only the P-wave velocity.
Frequency response signals have been used for the non-destructive evaluation of many different structures and for the integrity evaluation of porcelain insulators. However, it is difficult to accurately estimate the integrity of porcelain insulators under various environmental conditions only by using general frequency response signals. Therefore, this study used a method that extracted several features that can be derived from the frequency response signal and reduced their dimensions to select features suitable for the evaluation of the soundness of porcelain insulators. The latest machine learning techniques were used to identify correlations and not for basic feature analyses. Two machine learning models were developed using the support vector machine and ensemble methods in MATLAB. Both models showed high reliability in distinguishing between normal and defective porcelain insulators, and they could visualize the distribution area of the data by extracting quantitative values and applying machine learning, rather than simply verifying the frequency response signal.
Prestressed concrete (PSC) is widely used for the construction of bridges. The collapse of several bridges with PSC has been reported, and insufficient grout and tendon corrosion were found inside the ducts of these bridges. Therefore, non-destructive testing (NDT) technology is important for identifying defects inside ducts in PSC structures. Electromagnetic (EM) waves have limited detection of internal defects in ducts due to strong reflections from the surface of the steel ducts. Spectral analysis of the existing impact echo (IE) method is limited to specific conditions. Moreover, the flexural mode in upper defects of ducts located at a shallow depth and delamination defects inside ducts are not considered. In this study, the applicability of the elastic wave of IE was analyzed, and multichannel analysis of surface, EM, and shear waves was employed to evaluate six types of PSC structures. A procedure using EM waves, IE, and principal component analysis (PCA) was proposed for a more accurate classification of defect types inside ducts. The proposed procedure was effective in classifying upper, internal, and delamination defects of ducts under 100 mm in thickness, and it could be utilized up to 200 mm in the case of duct defect limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.