We review a few ideas and experiments that our laboratory at Korea University has proposed and carried out to use vector polarizability β to manipulate alkali-metal atoms. β comes from spin-orbit coupling, and it produces an ac Stark shift that resembles a Zeeman shift. When a circularly polarized laser field is properly detuned between the D 1 and D 2 transitions, an ac Stark shift of a ground-state atom takes the form of a pure Zeeman shift. We call it the "analogous Zeeman effect", and experimentally demonstrated an optical Stern-Gerlach effect and an optical trap that behaves exactly like a magnetic trap. By tuning polarization of a trapping beam, and thereby controlling a shift proportional to β, we demonstrated elimination of an inhomogeneous broadening of a ground hyperfine transition in an optical trap. We call it "magic polarization".We also showed significant narrowing of a Raman sideband transition at a specific well depth. A Raman sideband in an optical trap is broadened owing to anharmonicity of the trap potential, and the broadening can be eliminated by a β-induced differential ac Stark shift at what we call a "magic well depth". Finally, we proposed and experimentally demonstrated a cooling scheme that incorporated the idea of velocity-selective coherent population trapping to Raman sideband cooling to enhance cooling efficiency of the latter outside of the Lamb-Dicke regime. We call it "motionselective coherent population trapping", and β is responsible for the selectivity. We include as Supplementary Material a program file that calculates both scalar and vector polarizabilities of a given alkali-metal atom when the wavelength of an applied field is specified. It also calculates depth of a potential well and photon-scattering rate of a trapped atom in a specific ground state when power, minimum spot size, and polarization of a trap beam are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.