SUMMARY
Cornichon-2 and -3 (CNIH-2/-3) are AMPA receptor (AMPAR) binding proteins that promote receptor trafficking, and markedly slow AMPAR deactivation in heterologous cells, but their role in neurons is unclear. Using CNIH-2 and -3 conditional knock-out mice, we find a profound reduction of AMPAR synaptic transmission in the hippocampus. This deficit is due to the selective loss of surface GluA1-containing AMPARs (GluA1A2 heteromers), leaving a small residual pool of synaptic GluA2A3 heteromers. The kinetics of AMPARs in neurons lacking CNIH2/3 are faster than those in WT neurons due to the fast kinetics of GluA2A3 heteromers. The remarkably selective effect of CNIHs on the GluA1 subunit, is likely mediated by TARP γ-8, which prevents a functional association of CNIHs with non-GluA1 subunits. These results point to a sophisticated interplay between CNIHs and γ-8 that dictates subunit-specific AMPAR trafficking and the strength and kinetics of synaptic AMPAR-mediated transmission.
Glutamate receptors of the AMPA subtype (AMPARs) mediate fast synaptic transmission in the brain. These ionotropic receptors rely on auxiliary subunits known as transmembrane AMPAR regulatory proteins (TARPs) for both trafficking and gating. Recently, a second family of AMPAR binding proteins, referred to as cornichons, were identified and also proposed to function as auxiliary subunits. Cornichons are transmembrane proteins that modulate AMPAR function in expression systems much like TARPs. In the present study we compare the role of cornichons in controlling AMPA receptor function in neurons and HEK cells to that of TARPs. Cornichons mimic some, but not all, of the actions of TARPs in HEK cells; their role in neurons, however, is more limited. Although expressed cornichons can affect the trafficking of AMPARs, they were not detected on the surface of neurons and failed to alter the kinetics of endogenous AMPARs. This neuronal role is more consistent with that of an endoplasmic reticulum (ER) chaperone rather than a bona fide auxiliary subunit.stargazin | synapse | auxiliary subunit | hippocampus
PICK1 is a calcium-sensing, PDZ domain-containing protein that interacts with GluR2 and GluR3 AMPA receptor (AMPAR) subunits and regulates their trafficking. Although PICK1 has been principally implicated in long-term depression (LTD), PICK1 overexpression in CA1 pyramidal neurons causes a CaMK- and PKC-dependent potentiation of AMPAR-mediated transmission and an increase in synaptic GluR2-lacking AMPARs, mechanisms associated with NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here, we directly tested whether PICK1 participates in both hippocampal NMDAR-dependent LTP and LTD. We show that the PICK1 potentiation of AMPAR-mediated transmission is NMDAR dependent and fully occludes LTP. Conversely, blockade of PICK1 PDZ interactions or lack of PICK1 prevents LTP. These observations demonstrate an important role for PICK1 in LTP. In addition, deletion of PICK1 or blockade of PICK1 PDZ binding prevented NMDAR-dependent LTD. Thus, PICK1 plays a critical role in bidirectional NMDAR-dependent long-term synaptic plasticity in the hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.