Flexible piezoelectric acoustic sensors have been developed to generate multiple sound signals with high sensitivity, shifting the paradigm of future voice technologies. Speech recognition based on advanced acoustic sensors and optimized machine learning software will play an innovative interface for artificial intelligence (AI) services. Collaboration and novel approaches between both smart sensors and speech algorithms should be attempted to realize a hyperconnected society, which can offer personalized services such as biometric authentication, AI secretaries, and home appliances. Here, representative developments in speech recognition are reviewed in terms of flexible piezoelectric materials, self‐powered sensors, machine learning algorithms, and speaker recognition.
Flexible resonant acoustic sensors have attracted substantial attention as an essential component for intuitive human-machine interaction (HMI) in the future voice user interface (VUI). Several researches have been reported by mimicking the basilar membrane but still have dimensional drawback due to limitation of controlling a multifrequency band and broadening resonant spectrum for full-cover phonetic frequencies. Here, highly sensitive piezoelectric mobile acoustic sensor (PMAS) is demonstrated by exploiting an ultrathin membrane for biomimetic frequency band control. Simulation results prove that resonant bandwidth of a piezoelectric film can be broadened by adopting a lead-zirconate-titanate (PZT) membrane on the ultrathin polymer to cover the entire voice spectrum. Machine learning–based biometric authentication is demonstrated by the integrated acoustic sensor module with an algorithm processor and customized Android app. Last, exceptional error rate reduction in speaker identification is achieved by a PMAS module with a small amount of training data, compared to a conventional microelectromechanical system microphone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.