e Misfolding of proteins containing abnormal expansions of polyglutamine (polyQ) repeats is associated with cytotoxicity in several neurodegenerative disorders, including Huntington's disease. Recently, the eukaryotic chaperonin TRiC hetero-oligomeric complex has been shown to play an important role in protecting cells against the accumulation of misfolded polyQ protein aggregates. It is essential to elucidate how TRiC function is regulated to better understand the pathological mechanism of polyQ aggregation. Here, we propose that vaccinia-related kinase 2 (VRK2) is a critical enzyme that negatively regulates TRiC. In mammalian cells, overexpression of wild-type VRK2 decreased endogenous TRiC protein levels by promoting TRiC ubiquitination, but a VRK2 kinase-dead mutant did not. Interestingly, VRK2-mediated downregulation of TRiC increased aggregate formation of a polyQ-expanded huntingtin fragment. This effect was ameliorated by rescue of TRiC protein levels. Notably, small interference RNA-mediated knockdown of VRK2 enhanced TRiC protein stability and decreased polyQ aggregation. The VRK2-mediated reduction of TRiC protein levels was subsequent to the recruitment of COP1 E3 ligase. Among the members of the COP1 E3 ligase complex, VRK2 interacted with RBX1 and increased E3 ligase activity on TRiC in vitro. Taken together, these results demonstrate that VRK2 is crucial to regulate the ubiquitination-proteosomal degradation of TRiC, which controls folding of polyglutamine proteins involved in Huntington's disease.
Circadian gene expression is defined by the gene-specific phase and amplitude of daily oscillations in mRNA and protein levels. D site-binding protein mRNA (Dbp mRNA) shows high-amplitude oscillation; however, the underlying mechanism remains elusive. Here, we demonstrate that heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key regulator that activates Dbp transcription via the poly(C) motif within its proximal promoter. Biochemical analyses identified hnRNP K as a specific protein that directly associates with the poly(C) motif in vitro. Interestingly, we further confirmed the rhythmic binding of endogenous hnRNP K within the Dbp promoter through chromatin immunoprecipitation as well as the cycling expression of hnRNP K. Finally, knockdown of hnRNP K decreased mRNA oscillation in both Dbp and Dbp-dependent clock genes. Taken together, our results show rhythmic protein expression of hnRNP K and provide new insights into its function as a transcriptional amplifier of Dbp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.