Group C rotaviruses (GCRVs) cause acute diarrhea in humans and animals worldwide and the evidence for a possible zoonotic role of GCRVs has been recently provided. However, there is little evidence of porcine GCRV infections or of their genetic diversity in South Korea. We examined 137 diarrheic fecal specimens from 55 farms collected from six provinces. RT-PCR utilizing primer pairs specific for the GCRV VP6 gene detected GCRV-positive reactions in 36 (26.2%) diarrheic fecal samples. Of these, 17 samples (12.4%) tested positive for porcine GCRVs alone and 19 samples (13.8%) were also positive for other pathogens. Other enteric pathogens except for GCRV were detected in 64 feces samples (46.7%) and no enteric pathogens were evident in 37 feces samples (27.0%). Phylogenetic and sequence homology analyses of GCRV partial VP6 gene between 23 Korean and other known porcine GCRVs demonstrated that Korean strains belonged to the porcine lineage. Furthermore, one Korean porcine strain shared the highest nucleotide (89.7-89.0%) and deduced amino acid sequence (92.9-93.9%) identities with bovine GCRV strains and was placed in the bovine GCRV lineage indicative of bovine origin. In conclusion, porcine GCRV infections are widespread in piglets with diarrhea in South Korea. The infecting porcine GCRVs mostly belong to the porcine lineage with the exception of one bovine-like GCRV, which possibly originated from bovine GCRV due to interspecies transmission.
The unclassified bovine enteric calicivirus (BEC) is a new bovine enteric calicivirus that is different from bovine norovirus, and causes diarrhea and pathologies in the small intestine of calves. This virus includes Nebraska (NB)- and Newbury agent 1 (NA1)-like strains. The prevalence of this BEC and its genetic characterization has only been reported in the UK and the USA. This study examined the prevalence and genetic diversity of these BECs in diarrheic calves in South Korea. Among a total of 645 diarrheic fecal specimens obtained from 629 cattle herds, these unclassified BECs were detected in 59 (9.1%) diarrheic fecal samples from 57 herds (9.3%) by either RT-PCR or nested PCR. Sequence and phylogenetic analyses of the partial RdRp gene showed that all the Korean BECs clustered together and were closely related to the NB-like viruses (80.9-88.1% nucleotide and 84.5-98.4% amino acid) but not to the NA1-like viruses (75.8-78.4% nucleotide and 79.7-82.8% amino acid). Although these viruses could not be classified into NA1- and NB-like viruses from the sequence and phylogenetic data of the entire capsid gene, all the Korean BECs clustered together on a branch separate from the other known BECs. These results show that these BEC infections are endemic in diarrheic calves in South Korea. The infecting strains are genetically closer to the NB-like viruses but have a distinct evolutionary pathway.
Unclassified bovine enteric calicivirus (BECV) is a newly recognized bovine enteric calicivirus that differs from bovine norovirus, and which causes diarrhea in the small intestines of calves. To date, methods such as real-time reverse transcription-polymerase chain reaction (RT-PCR) have not been developed for the rapid detection, quantitation and diagnosis of BECV. Presently, a BECV-specific SYBR Green real-time RT-PCR assay was evaluated and optimized. Diarrheic specimens (n=118) collected from 2004 to 2005 were subjected to RT-PCR, nested PCR and SYBR Green real-time RT-PCR. By conventional RT-PCR and nested PCR, 9 (7.6%) and 59 (50%) samples tested positive, respectively, whereas the SYBR Green assay detected BECV in 91 (77.1%) samples. Using BECV RNA standards generated by in vitro transcription, the SYBR Green real-time RT-PCR assay sensitively detected BECV RNA to 1.1 x 10(0)copies/microl (correlation coefficiency=0.98). The detection limits of the RT-PCR and nested PCR were 1.1 x 10(5) and 1.1 x 10(2)copies/microl, respectively. These results indicate that the SYBR Green real-time RT-PCR assay is more sensitive than conventional RT-PCR and nested PCR assays, and has potential as a reliable, reproducible, specific, sensitive and rapid tool for the detection, quantitation and diagnosis of unclassified BECV.
Abstract. Although the widespread occurrence of porcine group C rotaviruses (GCRV) is assumed, precise prevalence remains largely unknown because of the absence of reliable, specific, and rapid diagnostic methods. To detect and quantify porcine GCRV, the authors evaluated and optimized SYBR Green and TaqMan real-time reverse transcription polymerase chain reaction (RT-PCR) assays and applied them to 108 piglet fecal samples. Using serially diluted standard RNA transcripts of porcine GCRV VP6 gene, both SYBR Green and TaqMan real-time RT-PCR assays detected as few as 1 3 10 1 genome copies/ml (correlation coefficiency .0.99), whereas conventional RT-PCR detected 1.0 3 10 3 copies/ml. In addition, the conventional assay detected porcine GCRV in 24% (26/108) of fecal samples, whereas the detection rates of both SYBR Green and TaqMan assays were 72% (78 of 108) and 64% (70 of 108), respectively. The current study indicated that both real-time RT-PCR assays were reliable, specific, and rapid methods for the detection of porcine GCRV in porcine fecal samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.