This study represents the behavior of flexural test of methyl methacrylate modified unsaturated polyester polymer concrete beam reinforced with glassfiber-reinforced polymer (GFRP) sheets. The failure mode, load-deflection, ductility index, and separation load predictions according to the GFRP reinforcement thickness were tested and analyzed. The failure mode was found to occur at the bonded surface of the specimen with 10 layers of GFRP reinforcement. For the load-deflection curve, as the reinforcement thickness of the GFRP sheet increased, the crack load and ultimate load greatly increased, and the ductility index was found to be the highest for the beam with the thickness of the GFRP sheet at 10 layers (6 mm) or 13 layers (7.3 mm). The calculated results of separation load were found to match only the experimental results of the specimens where debonding occurred. The reinforcement effect was found to be most excellent in the polymer concrete with 10 layers of GFRP sheet reinforcement. The appropriate reinforcement ratio for the GFRP concrete beam suggested by this study was a fiber-reinforced-plastic cross-sectional ratio of 0.007-0.008 for a polymer concrete cross-sectional ratio of 1 (width) : 1.5 (depth).
This study was performed to evaluate the strength and durability properties of recycled polymer concrete using unsaturated polyester resin and recycled aggregates. Unsaturated polyester resin, natural and recycled aggregates and fly ash were used. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes (5-10 and 5-25 mm) and unit binder contents (10 % and 12 %). Tests for the compressive and flexural strength, freezing and thawing and durability for 20 % sulfuric solution were performed. The compressive and flexural strength of recycled polymer concrete were in the range of 85~97 MPa and 17.9~20.8 MPa, respectively. The strengths of recycled polymer concrete using recycled aggregate have similar or slightly decreased compared to polymer concrete using natural aggregate. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of recycled polymer concrete were in the range of 0.13~1.42 % and 94~99, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.