With proper guidance, virtual reality (VR) can provide psychiatric therapeutic strategies within a simulated environment. The visuo-haptic-based multimodal feedback VR solution has been developed to improve anxiety symptoms through immersive experience and feedback. A proof-of-concept study was performed to investigate this VR solution. Nine subjects recently diagnosed with panic disorder were recruited, and seven of them eventually completed the trial. Two VR sessions were provided to each subject. Depression, anxiety, and VR sickness were evaluated before and after each session. Although there was no significant effect of the VR sessions on psychiatric symptoms, we could observe a trend of improvement in depression, anxiety, and VR sickness. The VR solution was effective in relieving subjective anxiety, especially in panic disorder without comorbidity. VR sickness decreased over time. This study is a new proof-of-concept trial to evaluate the therapeutic effect of VR solutions on anxiety symptoms using visuo-haptic-based multimodal feedback simultaneously.
ObjectivePropofol is an intravenously administered anesthetic that enhances γ-aminobutyric acid-mediated inhibition in the central nerve system. Other mechanisms may also be involved in general anesthesia. Propofol has been implicated in movement disorders. The cerebellum is important for motor coordination and motor learning. The aim of the present study was to investigate the propofol effect on excitatory synaptic transmissions in cerebellar cortex.MethodsExcitatory postsynaptic currents by parallel fiber stimulation and complex spikes by climbing fiber stimulation were monitored in Purkinje cells of Wister rat cerebellar slice using whole-cell patch-clamp techniques.ResultsDecay time, rise time and amplitude of excitatory postsynaptic currents at parallel fiber Purkinje cell synapses and area of complex spikes at climbing fiber Purkinje cell synapses were significantly increased by propofol administration.ConclusionThe detected changes of glutamatergic synaptic transmission in cerebellar Purkinje cell, which determine cerebellar motor output, could explain cerebellar mechanism of motor deficits induced by propofol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.