Blood stasis syndrome (BSS) in traditional Asian medicine has been considered to correlate with the extent of atherosclerosis, which can be estimated using the cardioankle vascular index (CAVI). Here, the diagnostic utility of CAVI in predicting BSS was examined. The BSS scores and CAVI were measured in 140 stroke patients and evaluated with respect to stroke risk factors. Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic accuracy of CAVI for the diagnosis of BSS. The BSS scores correlated significantly with CAVI, age, and systolic blood pressure (SBP). Multiple logistic regression analysis showed that CAVI was a significant associate factor for BSS (OR 1.55, P = 0.032) after adjusting for the age and SBP. The ROC curve showed that CAVI and age provided moderate diagnostic accuracy for BSS (area under the ROC curve (AUC) for CAVI, 0.703, P < 0.001; AUC for age, 0.692, P = 0.001). The AUC of the “CAVI+Age,” which was calculated by combining CAVI with age, showed better accuracy (0.759, P < 0.0001) than those of CAVI or age. The present study suggests that the CAVI combined with age can clinically serve as an objective tool to diagnose BSS in stroke patients.
To determine whether diaphragmatic fatigue in the intact animal subjected to loaded breathing is associated with a decrease in diaphragmatic blood flow, seven unanesthetized sheep were subjected to severe inspiratory flow resistive (IFR) loads that led to a decrease in transdiaphragmatic pressure (Pdi) and a rise in arterial PCO2 (PaCO2). Blood flow to the diaphragm, other respiratory muscles, limb muscles, and major organs was measured using the radionuclide-labeled microsphere method. With these loads blood flow increased to the diaphragm (621 +/- 242%) and all the other inspiratory and expiratory diaphragm (621 +/- 242%) and all the other inspiratory and expiratory muscles; there was no statistically significant change in blood flow to these muscles at the time when Pdi decreased and PaCO2 rose. Blood flow also increased to the heart (103 +/- 34%), brain (212 +/- 39%), and adrenals (76 +/- 9%), whereas pancreatic flow decreased (-66 +/- 14%). Limb muscle blood flow remained unchanged. We conclude that in unanesthetized sheep subjected to IFR loads 1) we did not demonstrate a decrease in respiratory muscle blood flow associated with diaphragmatic fatigue and ventilatory failure, and 2) there is a redistribution of blood flow among major organs.
To determine whether the increase in oxidative capacity after respiratory muscle training with chronic inspiratory loads in sheep is specific to a particular fiber type, we measured cytochrome c oxidase (COX) activity in type I and type II fibers. COX activity in individual fibers was examined histochemically and measured as relative optical density by use of an image processing system. Fiber types were differentiated by the myosin adenosine-triphosphatase reaction. We found that COX activity was higher in both fiber types in the trained diaphragms than in the control diaphragms (P less than 0.01). The increase with training was greater in type II (39%) than in type I fibers (21%), resulting in relatively homogeneous COX activity in all diaphragmatic fibers. The proportion of type I fibers increased from 43.4 +/- 5.4% in the control diaphragm to 53.1 +/- 2.9% in the trained diaphragm, whereas the proportion of type II fibers decreased (P less than 0.001). We conclude that respiratory muscle training activates oxidative enzyme activity in both diaphragmatic fiber types; this activation is differentially more in type II fibers, which also decrease in proportion, and less in type I fibers, which increase in proportion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.