High-harmonic generation by focusing a femtosecond laser onto a gas is a well-known method of producing coherent extreme-ultraviolet (EUV) light. This nonlinear conversion process requires high pulse intensities, greater than 10(13) W cm(-2), which are not directly attainable using only the output power of a femtosecond oscillator. Chirped-pulse amplification enables the pulse intensity to exceed this threshold by incorporating several regenerative and/or multi-pass amplifier cavities in tandem. Intracavity pulse amplification (designed not to reduce the pulse repetition rate) also requires a long cavity. Here we demonstrate a method of high-harmonic generation that requires no extra cavities. This is achieved by exploiting the local field enhancement induced by resonant plasmons within a metallic nanostructure consisting of bow-tie-shaped gold elements on a sapphire substrate. In our experiment, the output beam emitted from a modest femtosecond oscillator (100-kW peak power, 1.3-nJ pulse energy and 10-fs pulse duration) is directly focused onto the nanostructure with a pulse intensity of only 10(11) W cm(-2). The enhancement factor exceeds 20 dB, which is sufficient to produce EUV wavelengths down to 47 nm by injection with an argon gas jet. The method could form the basis for constructing laptop-sized EUV light sources for advanced lithography and high-resolution imaging applications.
A simple colorimetric technique for the detection of small concentrations of aqueous heavy metal ions, including toxic metals such as lead, cadmium, and mercury, is described. Functionalized gold nanoparticles are aggregated in solution in the presence of divalent metal ions by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The aggregation also enhances the hyper-Rayleigh scattering (HRS) response from the nanoparticle solutions, providing an inherently more sensitive method of detection. The chelation/aggregation process is reversible via addition of a strong metal ion chelator such as EDTA. Suggestions for improving the sensitivity and selectivity of the technique are given.
An amorphous red phosphorus/carbon composite is obtained through a facile and simple ball milling process, and its electrochemical performance as an anode material for Na ion batteries is evaluated. The composite shows excellent electrochemical performance including a high specific capacity of 1890 mA h g(-1), negligible capacity fading over 30 cycles, an ideal redox potential (0.4 V vs. Na/Na(+)), and an excellent rate performance, thus making it a promising candidate for Na ion batteries.
Vision and language understanding has emerged as a subject undergoing intense study in Artificial Intelligence. Among many tasks in this line of research, visual question answering (VQA) has been one of the most successful ones, where the goal is to learn a model that understands visual content at region-level details and finds their associations with pairs of questions and answers in the natural language form. Despite the rapid progress in the past few years, most existing work in VQA have focused primarily on images. In this paper, we focus on extending VQA to the video domain and contribute to the literature in three important ways. First, we propose three new tasks designed specifically for video VQA, which require spatio-temporal reasoning from videos to answer questions correctly. Next, we introduce a new large-scale dataset for video VQA named TGIF-QA that extends existing VQA work with our new tasks. Finally, we propose a dual-LSTM based approach with both spatial and temporal attention, and show its effectiveness over conventional VQA techniques through empirical evaluations.
Sn4 P3 is introduced for the first time as an anode material for Na-ion batteries. Sn4 P3 delivers a high reversible capacity of 718 mA h g(-1), and shows very stable cycle performance with negligible capa-city fading over 100 cycles, which is attributed to the confinement effect of Sn nanocrystallites in the amorphous phosphorus matrix during cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.