In 2020, Kang et al. introduced the concept of a multipolar intuitionistic fuzzy set of finite degree, which is a generalization of a k-polar fuzzy set, and applied it to a BCK/BCI-algebra. The specific purpose of this study was to apply the concept of a multipolar intuitionistic fuzzy set of finite degree to a hyper BCK-algebra. The notions of the k-polar intuitionistic fuzzy hyper BCK-ideal, the k-polar intuitionistic fuzzy weak hyper BCK-ideal, the k-polar intuitionistic fuzzy s-weak hyper BCK-ideal, the k-polar intuitionistic fuzzy strong hyper BCK-ideal and the k-polar intuitionistic fuzzy reflexive hyper BCK-ideal are introduced herein, and their relations and properties are investigated. These concepts are discussed in connection with the k-polar lower level set and the k-polar upper level set.
The usual commutative ideal theory was extended to ideals in noncommutative rings by Lambek, introducing the concept of symmetric. Camillo et al. naturally extended the study of symmetric ring property to the lattice of ideals, defining the new concept of an ideal-symmetric ring. This paper focuses on the symmetric ring property on nil ideals, as a generalization of an ideal-symmetric ring. A ring [Formula: see text] will be said to be right (respectively, left) nil-ideal-symmetric if [Formula: see text] implies [Formula: see text] (respectively, [Formula: see text]) for nil ideals [Formula: see text] of [Formula: see text]. This concept generalizes both ideal-symmetric rings and weak nil-symmetric rings in which the symmetric ring property has been observed in some restricted situations. The structure of nil-ideal-symmetric rings is studied in relation to the near concepts and ring extensions which have roles in ring theory.
In this paper, we introduce the notion of a block commutativity in several groupoids, and show that the class of block commutative groupoids and the class of d/BCKalgebras are Smarandache disjoint. The block commutativity in linear/quadratic groupoids is investigated, and we prove that every group is a normal groupoid. Moreover, we discuss block n-commutative groupoids and block ranks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.