Maternal inheritance of mitochondria and mtDNA is a universal principle in human and animal development, guided by selective ubiquitin-dependent degradation of the sperm-borne mitochon-dria after fertilization. However, it is not clear how the 26S pro-teasome, the ubiquitin-dependent protease that is only capable of degrading one protein molecule at a time, can dispose of a whole sperm mitochondrial sheath. We hypothesized that the canonical ubiquitin-like autophagy receptors [sequestosome 1 (SQSTM1), microtubule-associated protein 1 light chain 3 (LC3), gamma-aminobutyric acid receptor-associated protein (GABARAP)] and the nontraditional mitophagy pathways involving ubiquitin-proteasome system and the ubiquitin-binding protein dislocase, valosin-containing protein (VCP), may act in concert during mam-malian sperm mitophagy. We found that the SQSTM1, but not GABARAP or LC3, associated with sperm mitochondria after fertilization in pig and rhesus monkey zygotes. Three sperm mitochondrial proteins copurified with the recombinant, ubiquitin-associated domain of SQSTM1. The accumulation of GABARAP-containing protein aggregates was observed in the vicinity of sperm mitochondrial sheaths in the zygotes and increased in the embryos treated with proteasomal inhibitor MG132, in which intact sperm mitochondri-al sheaths were observed. Pharmacological inhibition of VCP significantly delayed the process of sperm mitophagy and completely prevented it when combined with microinjection of autophagy-targeting antibodies specific to SQSTM1 and/or GABARAP. Sperm mitophagy in higher mammals thus relies on a combined action of SQSTM1-dependent autophagy and VCP-mediated dislocation and presentation of ubiquitinated sperm mitochondrial proteins to the 26S proteasome, explaining how the whole sperm mitochondria are degraded inside the fertilized mammalian oocytes by a protein recycling system involved in degradation of single protein molecules. mitochondria | mtDNA | ubiquitin | autophagy | mitophagy T he inheritance pattern of the mitochondrial genome does not follow Mendelian rules as mtDNA is predominantly or exclusively inherited from the mother in almost all eukaryotic species studied, which is referred to as maternal inheritance of mtDNA (1, 2). The proteolytic ubiquitin-proteasome system (UPS) for substrate-specific, regulated protein recycling has been implicated in the targeted degradation of paternal mi-tochondria (sperm mitophagy) in mammals and other taxa. Mammalian sperm mitochondria are already modified with ubiquitin during spermatogenesis and ultimately processed by proteasome-mediated proteolysis (3). Specific cell-permeant inhibitors of proteasomal chymotrypsin-like activity, MG132 and lactacystin, blocked the progression of sperm mitophagy after porcine fertilization, and the resumption of sperm mi-tochondrion degradation was observed once the MG132 (a reversible inhibitor) was removed from the zygotes (4). Our early study reported that sperm tails in zygotes were surrounded by lysosome-like structures, which sugge...
Despite decades of research, the mechanism by which the fertilizing spermatozoon penetrates the mammalian vitelline membrane, the zona pellucida (ZP) remains one of the unexplained fundamental events of human/mammalian development. Evidence has been accumulating in support of the 26S proteasome as a candidate for echinoderm, ascidian and mammalian egg coat lysin. Monitoring ZP protein degradation by sperm during fertilization is nearly impossible because those few spermatozoa that penetrate the ZP leave behind a virtually untraceable residue of degraded proteins. We have overcome this hurdle by designing an experimentally consistent in vitro system in which live boar spermatozoa are co-incubated with ZP-proteins (ZPP) solubilized from porcine oocytes. Using this assay, mimicking sperm-egg interactions, we demonstrate that the sperm-borne proteasomes can degrade the sperm receptor protein ZPC. Upon coincubation with motile spermatozoa, the solubilized ZPP, which appear to be ubiquitinated, adhered to sperm acrosomal caps and induced acrosomal exocytosis/formation of the acrosomal shroud. The degradation of the sperm receptor protein ZPC was assessed by Western blotting band-densitometry and proteomics. A nearly identical pattern of sperm receptor degradation, evident already within the first 5 min of coincubation, was observed when the spermatozoa were replaced with the isolated, enzymatically active, sperm-derived proteasomes. ZPC degradation was blocked by proteasomal inhibitors and accelerated by ubiquitin-aldehyde(UBAL), a modified ubiquitin protein that stimulates proteasomal proteolysis. Such a degradation pattern of ZPC is consistent with in vitro fertilization studies, in which proteasomal inhibitors completely blocked fertilization, and UBAL increased fertilization and polyspermy rates. Preincubation of intact zona-enclosed ova with isolated active sperm proteasomes caused digestion, abrasions and loosening of the exposed zonae, and significantly reduced the fertilization/polyspermy rates after IVF, accompanied by en-mass detachment of zona bound sperm. Thus, the sperm borne 26S proteasome is a candidate zona lysin in mammals. This new paradigm has implications for contraception and assisted reproductive technologies in humans, as well as animals.
-This study was conducted to examine the effect of alpha-lipoic acid with vitamin C and E on growth performance, intestinal morphology, and meat quality in broiler chickens under tropical conditions. A total of 288 one-day-old male ROSS 308 chicks (40±0.1 g) were used in a completely randomized design and allotted to one of six dietary treatments to form sixe replicates per treatment (eight birds per cage). The six dietary treatments were: a corn-soybean meal-based diet (NC; no antimicrobial compounds added) with 8 ppm alpha-lipoic acid (ALA); 150 ppm vitamin C and 75 ppm vitamin E (E-75); E-75 plus ALA (E-75-ALA); 150 ppm vitamin C and 50 ppm vitamin E (E-50) plus ALA (E-50-ALA); and 150 ppm vitamin C and 25 ppm vitamin E (E-25) plus ALA (E-25-ALA). All dietary treatments were continuously provided in liquid form, dissolved in water. Birds were housed in a battery cage (n = 36), and were offered dietary treatments on an ad libitum basis. The ambient temperature was maintained at 32±1 ºC for the first three weeks and reduced gradually to 28 ºC by the end of the experiment (day 35) to induce moderate tropical condition. One bird per pen (n = 6), and another bird per pen (n = 6) were euthanized via cervical dislocation to obtain terminal ileum to measure villus height and crypt depth at day 21, and to harvest breast meat and drumsticks to evaluate meat quality traits at day 35, respectively. Dietary treatment E-75-ALA improved body weight and average daily gain compared with birds fed other dietary treatments from day 1 to day 35. Birds fed dietary treatment E-75-ALA and E-50-ALA had higher villus height than those fed the other dietary treatments at day 21. Dietary treatments E-75-ALA and E-50-ALA reduced thiobarbituric acid reactive substance (TBARS) in drumsticks compared with other dietary treatments, but only treatment E-75-ALA decreased TBARS in breast meat at day 35. Liquid form of antioxidant compounds such as E-75-ALA can improve growth performance, histology of terminal ileum, and meat quality traits in broiler chickens under moderate tropical condition for 35 days.
Medicinal mushrooms have been used worldwide to treat cancer and modulate the immune system. Over the last several years, there has been increasing interest in isolating bioactive compounds from medicinal mushrooms and evaluating their health beneficial effects. Fomes fomentarius is used in traditional oriental medicine and is known to possess antioxidant, anti-inflammatory, antidiabetic, and antitumor effects. In the present study, we isolated fomentariol from Fomes fomentarius and investigated its anti-inflammatory effect in murine macrophages (RAW264.7 cells) stimulated with lipopolysaccharides. Fomentariol inhibited the production of nitric oxide and intracellular reactive oxygen species triggered by lipopolysaccharides. Interestingly, fomentariol differentially regulated cytokine production triggered by lipopolysaccharides. Fomentariol effectively suppressed the production of interleukin-1β and interleukin-6 but not tumor necrosis factor-α. The inhibitory effect of fomentariol against nitric oxide, interleukin-1β, and interleukin-6 production was possibly mediated by downregulation of the extracellular signal-regulated kinase signaling pathway. Taken together, our results suggest that fomentariol differentially modulated inflammatory responses triggered by lipopolysaccharides in macrophages and is one of the bioactive compounds that mediate the physiological effects of Fomes fomentarius.
Objective: An experiment was conducted to investigate the response of laying hens fed corn distiller' s dried grains with solubles (DDGS) that are naturally contaminated with deoxynivalenol (DON). Methods: One hundred and sixty 52-week-old Lohmann Brown Lite hens were randomly allotted to five dietary treatments with 8 replicates per treatment. The dietary treatments were formulated to provide a range of corn DDGS contaminated with DON from 0% to 20% (i.e., 5% scale of increment). All laying hens were subjected to the same management practices in a controlled environment. Body weight, feed intake and egg production were measured biweekly for the entire 8-week experiment. The egg quality was measured biweekly for 8 weeks. On weeks 4 and 8, visceral organ weights, blood metabolites, intestinal morphology, and blood cytokine concentrations were measured. Results: The inclusion of corn DDGS contaminated with DON in the diet did not alter (p> 0.05) the body weight, feed intake, hen-day egg production, egg mass and feed efficiency of the laying hens. No difference was found (p>0.05) in the egg quality of hens that were fed the dietary treatments. Furthermore, hens that were fed a diet containing corn DDGS contaminated with DON showed no change (p>0.05) in the visceral organ weights, the blood metabolites, and the cytokine concentrations. The crypt depth increased (p<0.05) as the amount of corn DDGS contaminated with DON increased. Proportionately, the villus height to crypt depth ratio of the laying hens decreased (p<0.05) with the increasing level of corn DDGS contaminated with DON in the diet. Conclusion:The inclusion of corn DDGS contaminated with DON up to 20% in layer diets did not cause changes in egg production performance and egg quality, which indicates that DON is less toxic at the concentration of 1.00 mg DON/kg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.