Abstract-This paper proposes a 10 : 1 unequal Gysel power divider using a capacitive loaded transmission line (CLTL). For obtaining a high dividing ratio of divider, the CLTL is proposed to realize a low characteristic impedance line below 10 Ω. A design method using a CLTL which consists of a small transmission line with shunt open stub at periodic intervals is newly suggested for power divider with the high power division ratio. For the validation of the CLTL power divider, the high dividing ratio of the fabricated Gysel divider is measured at a center frequency of 1 GHz. The measured performances are in good agreements with simulation results.
This paper introduces a modified Wilkinson power divider that uses uniform transmission lines for various terminated impedances and an arbitrary power ratio. For the designed power ratio, the proposed divider changes only the electrical lengths of the transmission lines between the input and output ports, and those between the output ports and the isolation resistor. In this case, even when various termination impedances of the ports exist, the divider characteristics are satisfied. To verify the feasibility of the proposed divider, two circuits were designed to operate at a frequency of 2 GHz with 2:1 and 4:1 power splitting ratios and various terminated impedances of 40, 70, and 60 Ω for one circuit, and 50, 70, and 60 Ω for the other. The measurement and simulation results were in good agreement. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ⓒ
Abstract-This paper presents an unequal-split Bagley power divider that consists of uniform transmission lines and is terminated in different impedances. This divider should be only adjusted by altering the length of the transmission lines. Such alteration of the transmission lines will result in an arbitrary power ratio between output ports. The Bagley divider consists of uniform transmission lines of same characteristic impedance value despite different impedances for input and output port termination. For analysis, two Bagley dividers are considered, one 3-way and one 5-way divider, both with arbitrary power ratio and arbitrary termination impedances. A good agreement can be observed between the simulated and measured results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.