A PARP inhibitor is a rationally designed targeted therapy for cancers with impaired DNA repair abilities. RAD51C is a paralog of RAD51 that has an important role in the DNA damage response. We found that cell lines sensitive to a novel oral PARP inhibitor, olaparib, had low levels of RAD51C expression using microarray analysis, and we therefore hypothesized that low expression of RAD51C may hamper the DNA repair process, resulting in increased sensitivity to olaparib. Compared with the cells with normal RAD51C expression levels, RAD51C-deficient cancer cells were more sensitive to olaparib, and a higher proportion underwent cell death by inducing G 2 -M cell-cycle arrest and apoptosis. The restoration of RAD51C in a sensitive cell line caused attenuation of olaparib sensitivity. In contrast, silencing of RAD51C in a resistant cell line enhanced the sensitivity to olaparib, and the number of RAD51 foci decreased with ablated RAD51C expression. We also found the expression of RAD51C was downregulated in cancer cells due to epigenetic changes and RAD51C expression was low in some gastric cancer tissues. Furthermore, olaparib significantly suppressed RAD51C-deficient tumor growth in a xenograft model. In summary, RAD51C-deficient cancer cells are highly sensitive to olaparib and offer preclinical proof-of-principle that RAD51C deficiency may be considered a biomarker for predicting the antitumor effects of olaparib. Mol Cancer Ther; 12(6); 865-77. Ó2013 AACR.
KRAS is frequently mutated in nonsmall cell lung cancer (NSCLC), resulting in the activation of the MAPK/ERK kinase (MEK)/ERK pathway. High-throughput mutation profile has shown that lung cancer frequently harbors comutation of cancer-related genes. Therefore, given that cancer cells have multiple genetic alterations, combinatorial therapeutic strategy is demanded for effective cancer therapy. To address this, we first characterized MEK dependence in four NSCLC cells. Two cells (H358, A549) carried KRAS mutation only, and the other two (H23, H157) harbored comutation of KRAS/PTEN. H358 cells with KRAS mutation only were sensitive to MEK inhibition. However, the other KRAS mutant A549 cells were resistant to MEK inhibition. Previously, we have shown that dual inhibition of EGFR and MEK signaling shows a synergistic effect on KRAS mutant gastric cancer cells by suppressing compensatory activation of AKT. Here we also observed that this combination was effective in KRAS mutant A549 cells. However, the combination was ineffective in H23 and 157 cells with comutation of KRAS/PTEN. Compared to KRAS mutant/PTEN wild-type cells, signal transducer and activator of transcription 3 (STAT3) was significantly activated following MEK inhibition in KRAS/PTEN comutant cells. Combined STAT3 inhibition by a JAK2 inhibitor or gene knockdown with MEK inhibition blocked STAT3 activation, synergistically suppressed cell growth, and induced apoptosis in comutant cells. Taken together, our study provides molecular insights that help explain the heterogeneous response to MEK inhibition in KRAS mutant lung cancers, and presents a rationale for the clinical investigation of combination of MEK and EGFR inhibitor or MEK and JAK2 inhibitor depending on PTEN status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.