The demand for body fat reduction is increasing. However, conventional lipolytic approaches fail to control adipose tissue reduction and cause severe side effects in adjacent nonadipose tissues. A strategy to specifically reduce subcutaneous fat using adipocytolytic polymer nanoparticles in a minimally invasive manner is reported here. The polymer nanoparticles are designed to generate carbon dioxide gas when selectively absorbed by adipocytes. The carbon dioxide gas generated within late endosomes/lysosomes induces adipocytolysis, thereby reducing the number of cells. Localized injection of the adipocytolytic nanoparticles substantially reduces subcutaneous fat in a high-fat diet-induced obese mouse model, without significant changes in hematological or serum biochemical parameters. The adipocytolytic efficacy of the nanoparticles is also evaluated in a porcine model. This strategy addresses the need to develop safe and effective adipocytolytic agents using functional polymer nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.