It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-π interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.polyelectrolyte complexes | complex coacervates | cation-π interaction | like-charged coacervate | surface forces apparatus I t is well known that polyelectrolyte complexes can be formed when oppositely charged polyelectrolytes are mixed in aqueous solutions (1-4). This often leads to fluid-fluid phase separation, the so-called complex coacervation, namely, the appearance of a dense polyelectrolyte-rich liquid phase (coacervate phase) and a more dilute solution phase (aqueous phase, Fig. 1) (3, 4). The formation of polyelectrolyte complexes or coacervate can be impacted by many factors, including structural features of the component polymers (e.g., molecular weight, charge density, functional groups, hydrophilicity and hydrophobicity balance, etc.), mixing ratio and concentration of the oppositely charged polyelectrolytes, and solution and environmental conditions (e.g., pH, ionic strength, temperature, etc.) (3-5).Complex coacervate, which was suggested as "the origin of life" (6), finds application in many engineering and biological systems, such as microencapsulation in food, and in pharmaceutical and cosmetic industries due to the low interfacial energy of the coacervate phase (3,5,(7)(8)(9). Complex coacervate also plays a critical role in the underwater adhesion of many sessile marine organisms such as tubeworms and mussels, which secrete and disperse adhesive proteins to form complex coacervates that facilitate their positioning and spreading over a desired substrate under seawater (10-12).It is believed that polyelectrolyte complexation is driven by mainly electrostatic attraction in long distances between oppositely charged polymer chains in water and by additional molecular recognition driving forces such as chirality, hydrogen bonding, and hydration in short distances, implying that the polyelectrolyte complex is composed of at least one polycation ...
Adhesive systems in many marine organisms are postulated to form complex coacervates (liquid-liquid phase separation) through a process involving oppositely charged polyelectrolytes. Despite this ubiquitous speculation, most well-characterized mussel adhesive proteins are cationic and polyphenolic, and the pursuit of the negatively charged proteins required for bulk complex coacervation formation internally remains elusive. In this study, we provide a clue for unraveling this paradox by showing the bulky fluid/fluid separation of a single cationic recombinant mussel foot protein, rmfp-1, with no additional anionic proteins or artificial molecules, that is triggered by a strong cation-π interaction in natural seawater conditions. With the similar condition of salt concentration at seawater level (>0.7 M), the electrostatic repulsion between positively charged residues of mfp-1 is screened significantly, whereas the strong cation-π interaction remains unaffected, which leads to the macroscopic phase separation (i.e., bulky coacervate formation). The single polyelectrolyte coacervate shows interesting mechanical properties including low friction, which facilitates the secretion process of the mussel. Our findings reveal that the cation-π interaction modulated by salt is a key mechanism in the mussel adhesion process, providing new insights into the basic understanding of wet adhesion, self-assembly processes, and biological phenomena that are mediated by strong short-range attractive forces in water.
At room temperature, meso-hexaaryl-substituted [28]hexaphyrins(1.1.1.1.1.1) in solution exist largely as an equilibrium between planar antiaromatic and distorted Möbius aromatic conformers. As the temperature decreases, the molecular structure changes into the distorted Möbius topology that commonly occurs in [28]hexaphyrins, which gives rise to longer excited singlet and triplet state lifetimes than planar antiaromatic [28]hexaphyrins. Temperature-dependent two-photon absorption measurements of [28]hexaphyrin indicate that the degree of aromaticity of Möbius [28]hexaphyrin is large, comparable to that of Hückel aromatic planar [26]hexaphyrin. Through our spectroscopic investigations, we have demonstrated that a subtle balance between the strains induced by the size of the [28]hexaphyrin macrocyclic ring and the energy stabilization contributed by pi-electron delocalization in the formation of distorted Möbius [28]hexaphyrin leads to the molecular structure change into the Möbius topology as the temperature decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.