The Korea Atomic Energy Research Institute (KAERI) is manufacturing CaSO4:Dy Teflon TL pellets which have more sensitivity and stability than commercial TLD. A method is presented of preparing the CaSO4:Dy phosphor-embedded Teflon powder, which is then compressed to a thin pellet form used as the TLD element. Investigations are made to determine optimum preparation conditions and dosimetric characteristics of the CaSO4:Dy Teflon pellet such as the sensitivity, energy response, dose response, fading, re-usability, and lowest level of detection. The results show that the sensitivity of the CaSO4:Dy pellet is 2 times higher than that of the commercial Teledyne CaSO4:Dy pellet. A dose-response was observed to be linear in the range from 10(-5) to 10 Gy. The relative energy response in the low energy region was 9.6 (normalised to the 137Cs gamma source), and the fading rate was about 10% for five months. The re-usability was estimated to be more than 60 cycles, and the low level of detection dose was 22 microGy. From the results, the CaSO4:Dy pellet developed in KAERI can be successfully used in personal dosemeters through appropriate filter design for compensating the energy response.
Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets have been developed for application in radiation dosimetry. LiF:M,Cu,Na,Si TL pellets were made from TL powders using a sintering process, that is, pressing and heat treatment. These pellets have a diameter of 4.5 mm, and a thickness of 0.8 mm are blue in colour and have a mass of 28 mg each. After 400 pellets had been produced they were irradiated with 137Cs gamma radiation and samples having a sensitivity within a +/-5% standard deviation were selected for experimental use. In the present study, the physical and dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets were investigated for their emission spectrum, dose response, energy response and fading characteristics. Photon irradiation for the experiments was carried out using X ray beams and a 137Cs gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and 10(-6) - 10(2) Gy respectively. The glow curves were measured with a manual type thermoluminescence dosimetry reader (system 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of 5 degrees C.s(-1). the main dosimetric peak of the glow curve appeared at 234 degrees C, its activation energy was 2.34 eV and the frequency factor was 1.00 x 10(23). The TL emission spectrum appeared at the blue region centred at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to the 137Cs response were within +/-20% in the overall photon energy region. No fading of the TL sensitivity of the pellets stored at room temperature was found over the course of a year. Therefore LiF:Mg,Cu,Na,Si TL pellets can be used for personal dosimetry, but more research is needed to improve the characteristics for repeated use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.