ObjectiveSystemic lupus erythematosus (SLE), an autoimmune disorder, has been associated with nearly 100 susceptibility loci. Nevertheless, these loci only partially explain SLE heritability and their putative causal variants are rarely prioritised, which make challenging to elucidate disease biology. To detect new SLE loci and causal variants, we performed the largest genome-wide meta-analysis for SLE in East Asian populations.MethodsWe newly genotyped 10 029 SLE cases and 180 167 controls and subsequently meta-analysed them jointly with 3348 SLE cases and 14 826 controls from published studies in East Asians. We further applied a Bayesian statistical approach to localise the putative causal variants for SLE associations.ResultsWe identified 113 genetic regions including 46 novel loci at genome-wide significance (p<5×10−8). Conditional analysis detected 233 association signals within these loci, which suggest widespread allelic heterogeneity. We detected genome-wide associations at six new missense variants. Bayesian statistical fine-mapping analysis prioritised the putative causal variants to a small set of variants (95% credible set size ≤10) for 28 association signals. We identified 110 putative causal variants with posterior probabilities ≥0.1 for 57 SLE loci, among which we prioritised 10 most likely putative causal variants (posterior probability ≥0.8). Linkage disequilibrium score regression detected genetic correlations for SLE with albumin/globulin ratio (rg=−0.242) and non-albumin protein (rg=0.238).ConclusionThis study reiterates the power of large-scale genome-wide meta-analysis for novel genetic discovery. These findings shed light on genetic and biological understandings of SLE.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of complex etiology that primarily affects women of childbearing age. The development of SLE is attributed to the breach of immunological tolerance and the interaction between SLE-susceptibility genes and various environmental factors, resulting in the production of pathogenic autoantibodies. Working in concert with the innate and adaptive arms of the immune system, lupus-related autoantibodies mediate immune-complex deposition in various tissues and organs, leading to acute and chronic inflammation and consequent end-organ damage. Over the past two decades or so, the impact of genetic susceptibility on the development of SLE has been well demonstrated in a number of large-scale genetic association studies which have uncovered a large fraction of genetic heritability of SLE by recognizing about a hundred SLE-susceptibility loci. Integration of genetic variant data with various omics data such as transcriptomic and epigenomic data potentially provides a unique opportunity to further understand the roles of SLE risk variants in regulating the molecular phenotypes by various disease-relevant cell types and in shaping the immune systems with high inter-individual variances in disease susceptibility. In this review, the catalogue of SLE susceptibility loci will be updated, and biological signatures implicated by the SLE-risk variants will be critically discussed. It is optimistically hoped that identification of SLE risk variants will enable the prognostic and therapeutic biomarker armamentarium of SLE to be strengthened, a major leap towards precision medicine in the management of the condition.
As a primary drug for the treatment of acute lymphoblastic leukemia (ALL), encapsulation of Lasparaginase (ASNase) into red blood cells (RBC) has been popular to circumvent immunogenicity from the exogenous protein. Unlike existing methods that perturbs RBC membranes, we introduce a novel method of RBC-incorporation of proteins using the membrane-traslocating low molecular weight protamine (LMWP). Confocal study of fluorescence-labeled LMWP-ovalbumin, as a model protein conjugate, has shown significant fluorescence inside RBCs. Surface morphology by scanning electron microscopy of the RBCs loaded with LMWP-ASNase was indistinguishable with normal RBCs. These drug loaded RBCs also closely resembled the profile of the native erythrocytes in terms of osmotic fragility, oxygen dissociation and hematological parameters. The in vivo half-life of enzyme activity after administering 8 units of RBC/LMWP-ASNase in DBA/2 mice was prolonged to 4.5±0.5 days whereas that of RBCs loaded with ASNase via a hypotonic method was 2.4±0.7 days. Furthermore, the mean survival time of DBA/2 mice bearing mouse lymphoma cell L5178Y was improved by ∼44% compared to the saline control group after treatment with the RBC loaded enzymes. From these data, an innovative, novel method for encapsulating proteins into intact and fully functional erythrocytes was established for potential treatment of ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.