With contrasting observations on the effects of b-catenin on hematopoietic stem cells (HSCs), the precise role of Wnt/b-catenin signals on HSC regulation remains unclear. Here, we show a distinct mode of Wnt/b-catenin signal that can regulate HSCs in a stroma-dependent manner. Stabilization of b-catenin in the bone marrow stromal cells promoted maintenance and self-renewal of HSCs in a contactdependent manner, whereas direct stabilization in hematopoietic cells caused loss of HSCs. Interestingly, canonical Wnt receptors and b-catenin accumulation were predominantly enriched in the stromal rather than the hematopoi-
Using immunochemical and immunohistochemical methods, the binding site of Anguilla anguilla agglutinin (AAA) was characterized and compared with the related fucose-specific lectin from Ulex europaeus (UEA-I). In solid-phase enzyme-linked immunoassays, the two lectins recognized Fuc alpha 1-2Gal beta-HSA. AAA additionally cross-reacted with neoglycolipids bearing lacto-N-fucopentaose (LNFP) I [H type 1] and II [Le(a)] and lactodifucotetraose (LDFT) as glycan moieties. UEA-I, on the other hand, bound to a LDFT-derived neoglycolipid but not to the other neoglycolipids tested. Binding of AAA to gastric mucin was competitively neutralized by Le(a)-specific monoclonal antibodies. UEA-I binding, on the other hand, was reduced after co-incubation with H type 2- and Le(y)-specific monoclonal antibodies. According to our results, AAA reacts with fucosylated type 1 chain antigens, whereas UEA-I binds only to the alpha 1-2-fucosylated LDFT-derived neoglycolipid. In immunohistochemical studies, the reactivity of AAA and UEA-I in normal pyloric mucosa from individuals with known Lewis and secretor status was analysed. AAA showed a broad reaction in the superficial pyloric mucosa from secretors and non-secretors, but AAA reactivity was more pronounced in Le(a+b-) individuals. On the other hand, UEA-I stained the superficial pyloric mucosa only from secretor individuals. A staining of deep mucous glands by the lectins was found in all specimens. Both reacted with most human carcinomas of different origin. Slight differences in their binding pattern were observed and may be explained by the different fine-specificities of the lectins.
This study was carried out to examine the action mechanism of Chamaecyparis obtusa oil (CO) on hair growth in C57BL/6 mice. For alkaline phosphatase (ALP) and γ-glutamyl transpeptidase (γ-GT) activities in the skin tissue, at week 4, the 3% minoxidil (MXD) and 3% CO treatment groups showed an ALP activity that was significantly higher by 85% (p < 0.001) and 48% (p < 0.05) and an γ-GT activity that was significantly higher by 294% (p < 0.01) and 254% (p < 0.05) respectively, as compared to the saline (SA) treatment group. For insulin-like growth factor-1 (IGF-1) mRNA expression in the skin tissue, at week 4, the MXD and CO groups showed a significantly higher expression by 204% (p < 0.05) and 426% (p < 0.01) respectively, as compared to the SA group. At week 4, vascular endothelial growth factor (VEGF) expression in the MXD and CO groups showed a significantly higher expression by 74% and 96% (p < 0.05) respectively, however, epidermal growth factor (EGF) expression in the MXD and CO groups showed a significantly lower expression by 66% and 61% (p < 0.05) respectively, as compared to the SA group. Stem cell factor (SCF) expression in the MXD and CO groups was observed by immunohistochemistry as significant in a part of the bulge around the hair follicle and in a part of the basal layer of the epidermis. Taking all the results together, on the basis of effects on ALP and γ-GT activity, and the expression of IGF-1, VEGF and SCF, which are related to the promotion of hair growth, it can be concluded that CO induced a proliferation and division of hair follicle cells and maintained the anagen phase. Because EGF expression was decreased significantly, CO could delay the transition to the catagen phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.